
Constraint Driven Learning

B. Tech. Project Report

2017-18

Submitted in the partial fulfilment of

the requirements for the degree of

Bachelor of Technology

By

Kalpesh Krishna

140070017

Department of Electrical Engineering

Under the guidance of

Prof. Manoj Gopalkrishnan

Department of Electrical Engineering

Prof. Preethi Jyothi

Department of Computer Science & Engineering

Acknowledgments

I would like to thank my advisors Prof. Preethi Jyothi and Prof. Manoj
Gopalkrishnan for guiding me, encouraging me to take up this research prob-
lem, and keeping me motivated throughout the journey. I am thankful to
Prof. Preethi for providing me access to the CSALT’s computational cluster
which helped me run all my experiments.

I am also grateful to Prof. Mohit Iyyer, Prof. Kevin Gimpel, Prof. Karen
Livescu and John Wieting for several useful discussions at different stages of
this project.

Finally, I thank Tim Rocktäschel for encouraging me to use Twitter. Fol-
lowing NLP researchers on Twitter has helped me keep up-to-date with the
most important research happening in NLP. This led me to find out about
ELMo in the last few months of the project, that helped us obtain the most
interesting results of this thesis.

1

Abstract

Modern machine learning using neural networks is often completely data-driven and done in
a domain-independent, end-to-end fashion. This is a paradigm shift compared to traditional
algorithms which heavily relied on domain-specific priors or hand-crafted features decided
by domain experts. In this thesis we explore algorithms designed to improve performance
of end-to-end systems by using traditional techniques or domain-specific rules and priors.
Our focus is on two important NLP tasks - Language Modelling and Sentiment Analysis.

A part of this thesis was published in EMNLP 2018 [1].

2

Contents

1 Introduction 4

2 Task Description 6
2.1 Language Modelling . 6

2.1.1 Algorithms . 6
2.1.2 Datasets . 6
2.1.3 Benchmarks . 7
2.1.4 Evaluation . 7

2.2 Sentiment Classification . 7
2.2.1 Linguistics . 7
2.2.2 Algorithms . 7
2.2.3 Datasets . 8
2.2.4 Benchmarks . 8

3 Algorithms 9
3.1 Model Mimicking Loss Function . 9

3.1.1 Idea . 9
3.1.2 Teacher Distribution . 10
3.1.3 Experiments . 10
3.1.4 Technical Challenges . 11
3.1.5 Future Work . 11

3.2 Posterior Regularization . 13
3.2.1 PR for Neural Networks . 13
3.2.2 Perceptron Algorithm . 14
3.2.3 Experiments . 14
3.2.4 Future Work . 15

3.3 Contextualized Word Embeddings . 16
3.3.1 Experiments . 16
3.3.2 Future Work . 17

3.4 Input Gradient Regularization . 18
3.4.1 Past Work . 18
3.4.2 Model . 18
3.4.3 Experiments . 18
3.4.4 Future Work . 18

4 Digressions 19
4.1 Optimization of Language Models . 19
4.2 Averaging Across Random Seeds . 20
4.3 Ambiguity of Sentiment Analysis . 22

5 Conclusion 24

References 24

3

1 Introduction

Machine learning is slowly becoming a ubiquitous component in modern software. machine
learning has been actively researched since the 1960s, but only recently have the computa-
tional resources caught up sufficiently to complement the algorithms. machine learning is
often described as Software 2.0, and we are moving towards a stage where our day-to-day
lives would heavily rely on machine learning algorithms.
Modern, state-of-the-art algorithms in machine learning rely on neural networks, which are
large non-linear function approximators having millions of parameters. A modern solution
to machine learning problems involves an “end-to-end” neural network, where a single neural
network directly converts inputs to outputs. The state-of-the-art performance for several
tasks often uses this “end-to-end” approach. This design comes with its share of perks and
problems,

• Domain Independent - The same architecture achieves good performance across
domains (NLP, Vision, Speech). For instance ResNets, introduced in image classifica-
tion [2] have been successfully used in lexicon-free speech recognition [3].

• Uninterpretable - Since end-to-end systems are so large, it’s hard to understand
which weights are interacting in what fashion to make particular decisions. Neural
Networks are often termed as “black-boxes”. Recent efforts are trying to use input
gradients to demystify these “black-boxes” [4].

• Unintuitive - They are not very well understood in terms of performance differences
with architectural changes. Several design decisions such as depth, hidden units,
optimization and regularization are often ad-hoc and not theoretically motivated -
decided based on trial-and-error. As a digression, we describe some optimization
issues we faced in our Language Modelling experiments in Section 4.1.

• Difficult to Encode rules, traditional algorithms and intuitive ideas built over several
decades of domain-specific research or traditional machine learning. We hope these
rules are learnt from data!

• Heavily Reliant on Data - Without large datasets, it’s impossible to train end-to-
end systems. Large datasets are often hard and expensive to build and label.

Hence, rich datasets with several representative examples of domain-specific priors are criti-
cal for the success of “end-to-end” systems. In low-resource or zero-resource settings, “end-
to-end” systems cannot be used.
This thesis explores algorithms which augment supervised “end-to-end” neural networks
with information derived from traditional algorithms or explicit rules and constraints (and
hence “Constraint-Driven Learning”). We focus on two tasks, Language Modelling and Bi-
nary Sentiment Classification.
We begin by describing the tasks and datasets used in Section 2, with Language Modelling
in Section 2.1 and Sentiment Classification in Section 2.2. We then move to our constraint-
driven learning algorithms in Section 3. We start with “Model Mimicking Loss Functions”,
an approach resembling neural distillation [5] in Section 3.1. We then move to Posterior
Regularization (PR) techniques in Section 3.2, describing a PR framework for neural net-
works and the perceptron algorithm. We present Input Gradient Regularization algorithms
in Section 3.4. Finally, we present our best results in Section 3.3 using the contextualized
word embeddings algorithm, ELMo.
In addition to the main thesis, we present a set of digressions in Section 4, a set of impor-

4

tant issues, extremely relevant to modern deep learning, which we faced in the course of this
project. In Section 4.1 we describe issues with optimizers in Language Modelling experi-
ments which significantly delayed our progress. We move on to an analysis describing the
importance of averaging across random seeds with small datasets (like SST for Sentiment
Classification) in Section 4.2. Finally, in Section 4.3, we raise concerns about the ambiguity
in sentiment classification. This includes a revealing crowd-sourced evaluation of some of
the difficult sentences in the SST dataset for sentiment classification.

5

2 Task Description

2.1 Language Modelling

Language Modelling are probabilistic models that measure the likelihood of a sentence in a
particular language. Let’s assume a language has a vocabulary V , which is the set of tokens
in the language. A language model attempts to find out,

p(w1w2...w|L|)

Where wi ∈ V , and L is the length of the sentence. To allow us to model sentences
of variable length, a special end-of-sentence token <EOS> is added to the vocabulary [6].
Language models can be used as next-token predictors using Bayes’ rule,

p(w1w2w3...) = p(w1)p(w2|w1)p(w3|w1w2)...

Hence a language model tries to model p(wi|wi−11) for all i and all wi ∈ V . Here wi−11 is a
short form for w1w2...wi−1.

2.1.1 Algorithms

Traditional techniques for language modelling include n-grams, which work with the as-
sumption,

p(wi|wi−11) = p(wi|wi−1i−n+1) ≈
c(wii−n+1)

c(wi−1i−n+1)

Where c(·) is a count in the training corpus. Since the denominator is likely to be zero for
rare contexts, smoothing techniques are applied [6]. The most popular smoothing technique
is the Kneser-Ney smoothing. This smoothing technique uses context to determine n-gram
distributions. A popular example to describe this technique is the bi-gram “San Francisco”.
If this bi-gram appears frequently in the dataset, the unigram frequency of “Francisco” will
be high. Relying on only the unigram frequency to predict the frequencies of n-grams would
lead to incorrect results. Kneser–Ney smoothing corrects this by considering the frequency
of the unigram in relation to possible words preceding it.

Modern techniques use an LSTM [7] which predicts a probability distribution across all words
at each timestep. LSTMs are trained using a cross-entropy loss term at each timestep,

L = − 1

T

T∑
t=1

log p(wi|wi−11)

Note that the cross entropy computation is between a one-hot probability distribution (of
size V) representing the ground truth wi and the model’s prediction.

2.1.2 Datasets

The most popular benchmark for language modelling in English is the PTB (Penn Tree-
bank) [8]. This is an open-vocabulary dataset containing 1M tokens and a vocabulary of
10000 tokens. Owing to the small size of PTB, recently a few larger datasets are being
preferred, such as the wikitext2 and the wikitext3 [9].

6

2.1.3 Benchmarks

RNNs were first applied to language models in a series of papers by Mikolov et al, compiled
in his PhD Thesis [10]. A popular benchmark which is also a tutorial in the TensorFlow
repository is [11]. More recently, [12] showed that well-trained LSTMs can out-perform more
sophisticated architectures. [13] contains some useful tips for regularization and optimization
of neural language models. Finally, the current state-of-the-art for PTB is held by [14] an
interesting perspective on language models.

2.1.4 Evaluation

Language models are evaluated using “perplexity”. Perplexity can be defined as,

ppl = 2b = 2−
1
N

∑
i log p(wi|wi−1

1)

Information theoretically, b is an estimator of the average number of bits needed to encode
the probability distribution. The best KN-smoothed n-gram reaches a perplexity of ≈
140 [10] on PTB. The current state of the art on PTB is 47.69 [14].

2.2 Sentiment Classification

Sentiment Classification is a classification task (usually binary) which helps us determine
how positive / negative a sequence of words is. In a binary setting, we assume every sequence
has either got a positive sentiment or a negative sentiment. In a more fine-grained setting,
there could be a list of five sentiments (strongly positive, weakly positive, neutral, weakly
negative, strongly negative).

2.2.1 Linguistics

We focus on two types of discourse relations, namely A-but-B and negations. For A-but-
B sentences, the sentiment of the whole sentence is generally positively correlated with
the sentiment of B. For negation sentences, the sentiment of the whole sentence is gen-
erally negatively correlated with the sentiment of the negation scope, or the phrase being
negated. [15].
Negative sentiments seem to be more common in negation style sentences [16]. This paper
also talks about emphatic and attenuating words that influence the degree of sentiment of
a sentence. This paper is an interesting compilation of a number of linguistic phenomenon
that affect binary sentiments.

2.2.2 Algorithms

This thesis will focus on two baseline algorithms popularly used for sentiment classification.
The first algorithm is a 1-layer, 1-D convolutional neural network [17]. An input sentence
are converted first into a sequence of word embeddings (word2vec, [18]). A one-dimensional
CNN (across time) is applied over these word embeddings followed by a max-pool layer.
Finally, a fully connected layer with a softmax non-linearity projects the this intermediate

7

representation to a probability distribution across classes. This simple architecture shows
good success and is a common baseline for sentiment classification research.
The second algorithm [19] analyzed in this thesis is an extension to the previous CNN. This
framework is fairly general, and it can be used to augment any neural network with logic
rules. We have described this algorithm in detail in Section 3.2.1.

2.2.3 Datasets

We focus on the Stanford Sentiment Treebank [20], which focusses on sentence level sen-
timent classification. Each sentence is a representative part of a movie review on Rotten-
Tomatoes, originally mined in [21]. Three crowd workers have labelled each sentence from
1 to 25 depending on the degree of negative to positive sentiment. Two datasets have been
constructed from this, a binary classification dataset SST2 (with two labels, positive or
negative) and a 5-way classifcation dataset SST5 (very negative, slightly negative, neutral,
slightly positive, very positive). Additionally, two variants of the training set have been pro-
vided. One with phrase-level labels and another with just whole-sentence labels. Another
dataset we used was the MR dataset [21]. We present some data statistics in Table 1.

Number of Phrases Train Dev Test

Instances 76961 6920 872 1821
A-but-B 3.5% 11.1% 11.5% 11.5%
Negations 2.0% 17.5% 18.3% 17.2%
Discourse 5.0% 24.6% 26.0% 24.5%

Table 1: Statistics of SST2 dataset. Here “Discourse” includes both A-but-B and negation
sentences. The mean length of sentences is in terms of the word count.

2.2.4 Benchmarks

Evaluation on SST2 / SST5 is a simple classification accuracy. The first few experiments on
SST2 / SST5 were done in the papers which created the datasets, [20, 22]. The current state-
of-the-art of SST2 is [23], a simple architecture which is pre-trained on a very large corpus
before fine-tuning on the SST dataset. Another recent paper [24], which is an extension of
the CNN architecture, analyzes initalizations of CNN filters and achieves impressive results.
Finally, a paper on contextualized word embeddings (called ELMo) holds the state-of-the-art
in SST5 [25]. We have described our experiments with ELMo in Section 3.3.

8

3 Algorithms

3.1 Model Mimicking Loss Function

3.1.1 Idea

The standard cross entropy loss function L1 uses the ground truth values as a one hot
distribution.

L1 = − 1

T

T∑
t=1

log pθ(xt|xt−11)

Let’s assume a trained teacher model distribution qφ, and a student model distribution pθ.
We want to train the student model to emulate the distribution of a teacher model qφ. To
this end, we design a cross entropy loss function between the two distributions.
Let’s study a language modelling task with a training set with T tokens and vocabulary V .

L2 = − 1

T

T∑
t=1

∑
y∈V

qφ(y|xt−11) log pθ(y|xt−11)

This loss function has a gradient similar to the standard one-hot cross entropy loss. Following
the notation in Chapter 10 of [26], we obtain the gradient of the loss at timestep t with
respect to the logits layer o(t) as,

(∇o(t)L
(t)
2)i = pφ(yi|xt−11)− qθ(yi|xt−11)

For the special case of the standard cross-entropy loss, qφ(yi|xt−11) = 1 for the ground truth
and zero elsewhere.
We can now interpolate a standard cross-entropy loss L1 with our model mimicking loss L2.
This scheme resembles multi-task learning setups. We experiment with interpolation using
the following techniques,

• Direct Interpolation - Similar to the neural distillation [5] formulation,

L = λL1 + (1− λ)L2

• Alternation - Alternate weight updates on L = L1 and L = L2. This scheme
slightly resembles GAN training [27] which alternates updates of the generator and
the discriminator. However unlike GAN training, both updates are done on the same
set of weights, using different objectives.

• System Interpolation - We train two different language models, one with L = L1

and another with L = L2. During inference, we interpolate the probabilities predicted
by each model,

P (y|xt−11) = φP1(y|xt−11) + (1− φ)P2(y|xt−11)

We hope to inject information derived from more traditional algorithms through the model
mimicking loss function, hoping to leverage the benefits of both traditional algorithms and
neural models.

9

3.1.2 Teacher Distribution

Several attempts have been made in the past to include n-gram language model statistics
into neural architectures [28, 29]. In our experiments, we use a Kneser-Ney smoothed 3-gram
language model [6] and use it as our teacher distribution.

3.1.3 Experiments

We train our models using SRILM [30], an n-gram language modelling toolkit. We created
our language models using the command,
./srilm/bin/i686-m64/ngram-count -text ptb.train.txt -unk -interpolate -lm LM

-kndiscount -gt1min 1 -gt2min 1 -gt3min 1 -order 3

Inference using the command,
./srilm/bin/i686-m64/ngram -ppl ptb.test.txt -unk -lm LM -order 3

For the recurrent neural language models, we wrote a TensorFlow [31] implementation1

of [11], a standard baseline for LSTM language models. In addition to this, we tie the
weights of the embeddings and the final projection layer [32]. We train our models using
the different schemes described in Section 3.1.1 on the Penn Treebank corpus (PTB).

We present our results in Table 2. We observe slight performance gains with the direct
interpolation scheme (“L1 + L2”) over the baseline (“L1”). Also notice the superior perfor-
mance of the student model (“L2”) over its teacher (“3-gram”). We attribute this success
to better generalization of the model due to dropout.

Table 2: Perplexity on PTB test corpus for single models (no system interpolation). L1 /
L2 represents alternation, whereas L1 + L2 represents the direct interpolation with λ = 0.7.

Model Perplexity
3-gram 148.28

L1 76.67
L2 132.27

L1 / L2 82.92
L1 + L2 76.06

We now attempt to try out all possible combinations of system interpolation, and tune φ
on the validation set for each pair of models. We present our results in Table 3.

1TensorFlow has a tutorial for this at https://www.tensorflow.org/tutorials/recurrent

10

https://www.tensorflow.org/tutorials/recurrent

Table 3: Perplexity on PTB test corpus for different system interpolations. Max Perplexity
chooses the larger probability for each token = max{P1(xt|xt−11), P2(xt|xt−11)}. It is not a
metric of performance, rather an upperbound over different dynamic interpolation schemes.

Model 1 Model 2 Perplexity Max Perplexity
L1 L2 74.65 58.90
L1 3-gram 73.80 57.19
L1 L1 / L2 72.66 58.38
L1 L1 + L2 70.73 57.30
L2 3-gram 128.26 109.54
L2 L1 / L2 82.52 68.13
L2 L1 + L2 76.03 64.50

L1 / L2 3-gram 81.36 65.09
L1 / L2 L1 + L2 74.20 61.45
L1 + L2 3-gram 75.50 62.03

We notice that different system interpolation schemes improve performance over the baseline
(“L1” in Table 2). Notably on the PTB dataset, we get the best performance by interpolating
L1 with the direct interpolation model (L1 + L2).

Also notice the “Max Perplexity” column, which chooses the larger probability for every
token = max{P1(xt|xt−11), P2(xt|xt−11)}. It is not a metric of performance, rather an upper-
bound over different dynamic interpolation schemes. We notice “L1” combined with 3-gram
has the best “Max Perplexity”, which is indicative of the maximum diversity of the system
interpolation - no neural network (3-gram) with true neural objective (L1).

We try to see the benefits of a system interpolation between L1 and 3-grams by plotting the
probability of correct token in the L1 model against its probability in the 3-gram model,
in Figure 1. While most of the points lie in the L1-dominated region, there are a decent
number of tokens predicted more correctly by the 3-gram model than L1.

3.1.4 Technical Challenges

We faced a lot of trouble while optimizing the language models. We noticed significant
performance improvement by using the SGD optimizer instead of the Adam optimizer. We
have described our experience in Section 4.1.

3.1.5 Future Work

As future work, we hope to investigate a few pressing questions,

• How important are baselines in Language Models, if you don’t beat state-of-the-art
(SotA)? How well do our ideas scale to SotA models?

• Why does the Adam Optimizer perform so badly? (ref: Section 4.1)

• Can we improve our student models by keeping a high temperature while training
them from the teacher models? What is a good way to introduce temperature into
probability distributions without logits?

11

• Does L2 have merits in non-PTB settings of larger vocabularies, in morphologically
rich languages, or situations with less training data?

• What’s the best way to leverage n-gram statistics in LMs?

Figure 1: Distribution of correct validation tokens’ probabilities. Since a large number of
tokens are above the blue line (y = x), most of the performance in the system interpolation
of L1 and 3-gram is due to L1. The tokens below the blue line indicate all instances where
a 3-gram model will provide more accurate predictions than the L1 model.

12

3.2 Posterior Regularization

3.2.1 PR for Neural Networks

This approach tries to encode logic rules (such as the A-but-B rule described in Section
2.2.1), via the loss function. The approach can be broken down into two components -
Projection and Distillation.

Projection. The first technique is to project a trained model into a rule-regularized sub-
space, in a fashion similar to [33]. More precisely, a given model pθ is projected to a model
qθ defined by the optimum value of q in the following optimization problem:2

min
q,ξ≥0

KL(q(X, Y)||pθ(X, Y)) + C
∑
x∈X

ξx

s.t. (1− Ey←q(·|x)[rθ(x, y)]) ≤ ξx

Here q(X, Y) denotes the distribution of (x, y) when x is drawn uniformly from the set X
and y is drawn according to q(·|x).

Iterative Rule Knowledge Distillation. The second technique is to transfer the domain
knowledge encoded in the logic rules into a neural network’s parameters. Following [5], a
“student” model pθ can learn from the “teacher” model qθ, by using a loss function,

πH(pθ, Ptrue) + (1− π)H(pθ, qθ)

during training, where Ptrue denotes the distribution implied by the ground truth, H(·, ·)
denotes the cross-entropy function, and π is a hyperparameter. [19] computes qθ after every
gradient update, by projecting the current pθ, as described above. Note that both the
mechanisms can be combined: After fully training pθ using the iterative distillation process
above, the projection step can be applied one more time to obtain qθ which is then used as
the trained model.

The whole algorithm can be summarized as,

input: number of epochs E, number of minibatches B
for e = 1...E do

for b = 1...B do
// forward pass, calculate pθ;
// project pθ to get qθ;
// update θ using interpolated loss function

end

end
// For inference, we can use the final learnt pθ∗;
// or project the final pθ∗ to get qθ∗;

2The formulation in [19] includes another hyperparameter λ per rule, to control its relative importance;
when there is only one rule, as in our case, this parameter can be absorbed into C.

13

3.2.2 Perceptron Algorithm

We can augment the PR framework by learning a suitable value for C rather than a static C.
This can be done using the perceptron algorithm [34], with indivdual features being the raw
probabilities and the values ri. We didn’t achieve any significant improvements using this
approach and will not include experimental results with this approach in the next section.

3.2.3 Experiments

We use the publicly available implementation of [19]3 and run it for a 100 different random
seeds. (See Section 4.2 for more details on the importance of averaging).

Figure 2: Comparison of the accuracy improvements reported in [19] and those obtained
by averaging over 100 random seeds. The last two columns show the (averaged) accuracy
improvements for A-but-B style sentences. All models use the publicly available implemen-
tation of [19] trained on phrase-level SST2 data.

Reported Test Accuracy  
(Hu et al., 2016) Averaged Test Accuracy Averaged A-but-B accuracy

no-distill distill no-distill distill no-distill distill

no-project 87.2 88.8 87.66 87.97 80.25 82.17

project 87.9 89.3 88.73 88.77 89.56 89.13

+1.6

+1.4

+0.7 +0.5

+0.29

+0.04

+1.07 +0.80

+1.92

-0.43

+9.31 +6.96

Our analysis reveals that the reported performance of the two methods proposed in that work
(projection and distillation) is in fact affected by the high variability across random seeds.
As it turns out, the more robust averaged analysis yields a somewhat different conclusion
of their effectiveness.

In Figure 2, the first two columns show the reported accuracies in [19], for models trained
with and without distillation (corresponding to using values π = 1 and π = 0.95t in the tth

epoch, respectively). The two rows show the results for models with and without a final
projection into the rule-regularized space. We keep our hyper-parameters identical to [19]
(in particular, for projection, C = 6).

The baseline system (no-project, no-distill) is essentially identical to the system of [17].
All the systems are trained on the phrase-level SST2 dataset with early stopping on the
development set. The number inside each arrow indicates the improvement in accuracy by
adding either the projection or the distillation component to the training algorithm. Note
that the reported figures suggest that while both components help in improving accuracy,
the distillation component is much more helpful than the projection component.

The next two columns show the results of repeating the above analysis, but averaged over
100 random seeds. The averaged figures show slightly lower improvements, and more impor-
tantly, attributes the improvement almost entirely to the projection component rather than

3https://github.com/ZhitingHu/logicnn/

14

https://github.com/ZhitingHu/logicnn/

the distillation component. To confirm this, we repeat our averaged analysis restricted to
the sentences which affect the rule that the implementation targets, namely, “A-but-B” style
sentences (shown in the last two columns). We again observe that the effect of projection is
pronounced, while, in comparison, distillation offers little or no advantage.

3.2.4 Future Work

• Investigate the perceptron algorithm in a more thorough manner.

• Analyze [19] for non-binary sentiment classification.

• Analyze [19] for other binary classification tasks.

15

3.3 Contextualized Word Embeddings

Traditional context-independent word embeddings like word2vec [18] or GloVe [35] are fixed
vectors for every word in the vocabulary. In contrast, contextualized embeddings are dy-
namic representations, dependent on the current context of the word. We hypothesize that
contextualized word embeddings might inherently capture these logic rules due to increasing
the effective context size for the CNN layer in [17].

We follow the success of a recent contextualized embedding model, ELMo (Embeddings
from Language Models) [25], which is a bidirectional language model trained on the 1 Bil-
lion Words language modelling benchmark [36]. Embeddings are created using a weighted
combination of intermediate layer hidden representations, with the weights fine-tuned to the
downstream task.

3.3.1 Experiments

We utilize the TensorFlow Hub implementation of ELMo4 and feed these contextualized em-
beddings into our CNN model. As in Section 3.2, we check performance with and without
the final projection into the rule-regularized space.
We present our results in Table 4. Switching to ELMo word embeddings improves perfor-
mance by 2.91 percentage points on an average, corresponding to about 53.0 test sentences.
Of these, 31.78 (60% of the improvement) sentences correspond to A-but-B and negation
style sentences, which is substantial when considering that only 24.5% of test sentences in-
clude these discourse relations (Table 1). The baseline model (no-project, no-distill) gets
14.02% sentences incorrect on an average, which corresponds to 255.3 sentences in the test
corpus. However, only 88.8 (34.8%) of these sentences are A-but-B style or negations.

Model Test but but or neg

no-distill no-project 85.98 78.69 80.13
no-distill project 86.54 83.40 -

distill no-project 86.11 79.04 -
distill project 86.62 83.32 -

elmo no-project 88.89 86.51 87.24
elmo project 88.96 87.20 -

Table 4: Average performance (across 100 seeds) of ELMo on the SST2 task. We show
performance on A-but-B sentences (“but”), negations (“neg”). The “distill” results have
been trained on sentences and not phrase-level labels for a fair comparison with baseline
and ELMo, unlike Section 3.2.

KL Divergence Analysis: We observe no significant gains by projecting a trained ELMo
model into an A-but-B rule-regularized space, unlike the other models. We confirm that
ELMo’s predictions are much closer to the A-but-B rule’s manifold than those of the other
models by computing KL(qθ||pθ) where pθ and qθ are the original and projected distributions:
Averaged across all A-but-B sentences and 100 seeds, this gives 0.27, 0.26 and 0.13 for the
[17], [19] with distillation and ELMo systems respectively. Hence, a major chunk of ELMo’s
performance improvement is on contrastive conjunctions and negations.

4https://tfhub.dev/google/elmo/1

16

https://tfhub.dev/google/elmo/1

Performance vs Ambiguity: Given the inherent ambiguous nature of sentiment anal-
ysis, we check our models’ performance on subsets of the A-but-B and negation sentences
in SST2 based on a crowd-sourced evaluation of their ambiguity. We have described these
experiments in Section 4.3.

3.3.2 Future Work

Check performance of other discourse relations using ELMo and investigate the benefits of
ELMo + distillation. ELMo serves as a good baseline for the input gradient regularization
technique in Section 3.4.

17

3.4 Input Gradient Regularization

3.4.1 Past Work

Input gradients were first introduced in [37] as “Double Backpropagation”. Input gradients
have been used to interpret models [4, 38, 39, 40], structured prediction [41], generating ad-
versarial examples [42, 43, 44], training neural networks [45, 46] and Wasserstein GANs [47]
and knowledge transfer [48, 49].

Here is a good summary of the work done with input gradients [50].

3.4.2 Model

Intuitively, we want the gradient of the final probabilities to be higher with respect to the
“more important” input units. For A-but-B sentences, we would like ||∇BP+||2, ||∇BP−||2
to be high, and ||∇AP+||2, ||∇AP−||2 to be low. Here a gradient with respect to a word
refers to the gradient with respect to each of the word embedding input units. We encode
this in our model using the formulation outlined in [4]. For a single sentence,

L = λ2L1 + (1− λ2)||∇A logP+ +∇A logP−||22

3.4.3 Experiments

We present our results in Table 5. Our first experiment applies the gradient regularization
to the baseline [17] with λ2 = 0.99. While we do observe improvements over the baseline,
these do not correspond to A-but-B sentences, but general regularization instead. We then
apply our gradient loss function over ELMo, taking gradients with respect to the final
ELMo embeddings (with λ2 = 0.999). We notice modest improvements in performance,
corresponding to A-but-B sentences.

Table 5: Average performance (over 100 seeds) on gradient-based regularization.

Model Test but
no-distill no-project 85.98 78.69
no-distill project 86.54 83.40
grad no-project 86.54 78.96
grad project 87.15 84.15
elmo no-project 88.89 86.51
elmo project 88.96 87.19
grad + elmo no-project 89.05 87.40
grad + elmo project 88.98 86.55

3.4.4 Future Work

This idea has not been explored fully in this thesis. We should try out different variants the
gradient loss function, along with a more thorough hyperparameter grid search.

18

4 Digressions

4.1 Optimization of Language Models

We described our experiments with Language Models in Section 3.1. We noticed that it was
difficult to traing language models using the Adam optimizer, irrespective of the learning
rate. We compare the validation perplexity of different training configurations in Figure 3
for the baseline in [11]. Notice the large difference in performance between the best blue
and orange curve.

Figure 3: Validation perplexity vs epochs of training for various settings of learning rate
and decay schedules. The orange curves are trained using the Adam optimizer, whereas the
blue curves have been trained using Stochastic Gradient Descent.

We discovered some literature talking about the disadvantages of adaptive gradient methods
like Adam [51]. Notably, [52] presents a toy task where an adaptive gradient scheme will
fail and provide empirical evidence on the benefits of Stochastic Gradient Descent over
Adam. In the language modelling literature, [13] suggest using SGD instead of Adam for
language modelling. They also introduce NT-ASGD, a new optimization scheme to train
state-of-the-art language models.

The proofs in the original Adam paper have been re-analyzed in the ICLR best paper
award winner [53]. This paper introduces AMSGrad, a simple modification to improve the
optimization of Adam.

19

4.2 Averaging Across Random Seeds

For every sentiment analysis experiment in Section 3, we run each model 100 times with
early stopping on validation performance in each run. We noticed a large variation from
run-to-run, and carried out an analysis to assess the importance of averaging across random
seeds.

We run the sentiment classification baseline CNN by [17] across 100 random seeds, training
on sentence-level labels. We observe that, presumably due to the small size of the dataset,
there is a large amount of variation from run-to-run. This can be seen in the density plot
in Figure 4, which shows the range of accuracies (83.47 to 87.20) along with 25, 50 and 75
percentiles, when the models are trained with early stopping based on their performance in
the development set. The figure also shows how the variance persists even after the average
converges, by plotting (in gray) the accuracies of 100 models, as they are trained for 20
epochs each; their average accuracies are shown in red.

Figure 4: Variation in models trained on SST-2 (sentence-only). Accuracies of 100 randomly
initialized models are plotted against the number of epochs of training (in gray), along with
their average accuracies (in red, with 95% confidence interval error bars). The density plot
in inset shows the distribution of accuracies when trained with early stopping.

0.0

0.2

0.4

0.6

83.47 85.64 86.16 86.49 87.20

Ac
cu

ra
cy

 (%
)

Number of epochs of training

20

Table 6: Variance in SST-2 (sentence-only) performance in a pool of 100 runs. n is the
number of seeds taken at a time.

Dev Performance Test Performance
n Worst n Best n Diff. Worst n Best n Diff.
1 84.29 ± 0.00 86.35 ± 0.00 2.06 83.47 ± 0.00 87.20 ± 0.00 3.73
3 84.40 ± 0.09 86.28 ± 0.05 1.88 83.65 ± 0.19 87.10 ± 0.09 3.45
5 84.47 ± 0.12 86.15 ± 0.17 1.68 83.83 ± 0.26 87.04 ± 0.10 3.21

10 84.58 ± 0.14 85.95 ± 0.23 1.37 84.21 ± 0.44 86.91 ± 0.15 2.70
20 84.70± 0.16 85.76± 0.25 1.06 84.69± 0.58 86.80± 0.16 2.11
50 84.94 ± 0.24 85.54 ± 0.25 0.60 85.40 ± 0.71 86.54 ± 0.25 1.14

100 85.24 ± 0.38 85.24 ± 0.38 0.00 85.97 ± 0.78 85.97 ± 0.78 0.00

We reinforce the importance of having more seeds, we use common choices for number of
seeds (n = 1, 3, 5, 10) and find the best and worst possible performance in the pool of 100
seeds by averaging across the chosen number of seeds. We present our results in Table 6.
We notice a significant difference between the worst and best possible performance for all
common choices of n. We note a similar trend in the training schedules in Figure 5, with a
smooth ascent for the curve averaged across 100 seeds.

Figure 5: Test performance across epochs of training. We average performance across the
specified number of seeds at each epoch.

0 5 10 15 20
epochs

81

82

83

84

85

86

87

88

te
st

 p
e
rf

o
rm

a
n
ce

1 seeds
10 seeds

50 seeds
100 seeds

We conclude that, to be reproducible, only averaged accuracies should be reported in this
task and dataset. This mirrors the conclusion from a detailed analysis by [54] in the context
of named entity recognition.

21

4.3 Ambiguity of Sentiment Analysis

We report a crowdsourced analysis that reveals that SST2 data has significant levels of
ambiguity even for human labelers. We discover that ELMo’s performance improvements
over the baseline are robust across varying levels of ambiguity, whereas the advantage of [19]
is reversed in sentences of low ambiguity (restricting to A-but-B style sentences).

Our crowdsourced experiment was conducted on Figure Eight5. Nine workers scored the
sentiment of each A-but-B and negation sentence in the test SST2 split as 0 (negative), 0.5
(neutral) or 1 (positive). (SST originally had three crowdworkers choose a sentiment rating
from 1 to 25 for every phrase.) We average the scores across all users for each sentence.
Corresponding to a threshold x ∈ [0.5, 1), sentences with a score in the range (x, 1] are
marked as positive, in [0, 1− x) marked as negative, and in [1− x, x] are marked as neutral.
(E.g., “flat , but with a revelatory performance by michelle williams” (score=0.56) is neutral
when x = 0.6.) Higher thresholds correspond to less ambiguous sentences. Accuracy rate
of a model is measured for each threshold by omitting the neutral sentences.

Table 7 shows that ELMo’s performance gains in Table 4 extends across all thresholds.
In Figure 6 we compare all the models on the A-but-B sentences in this set. Across all
thresholds, we notice trends similar to previous sections: 1) ELMo performs the best among
all models on A-but-B style sentences, and projection results in only a slight improvement;
2) models in [19] (with and without distillation) benefit considerably from projection; but 3)
distillation offers little improvement (with or without projection). Also, across all models,
with increasing threshold we see decreasing gains from projection. In fact, beyond the 0.85
threshold, projection degrades the average performance, indicating that projection is useful
for more ambiguous sentences.

Threshold 0.50 0.66 0.75 0.90

Neutral Sentiment 10 70 95 234
Flipped Sentiment 15 4 2 0

no-distill, no-project 81.32 83.54 84.54 87.55
elmo, no-project 87.56 90.00 91.31 93.14

Table 7: Number of sentences in the crowdsourced study (447 sentences) which got marked
as neutral and which got the opposite of their labels in the SST2 dataset, using various
thresholds. Average accuracies of the baseline and ELMo (over 100 seeds) on non-neutral
sentences are also shown.

5 https://www.figure-eight.com/

22

https://www.figure-eight.com/

0.5 0.6 0.7 0.8 0.9
threshold

82

84

86

88

90

92

94

te
st

 p
er

fo
rm

an
ce

no-distill, no-project
no-distill, project
distill, no-project
distill, project
elmo, no-project
elmo, project

Figure 6: Average performance on the A-but-B part of the crowd-sourced dataset (210 sen-
tences, 100 seeds)). For each threshold, only non-neutral sentences are used for evaluation.

23

5 Conclusion

We compare a suite of algorithms in language modelling and sentiment analysis which aug-
ment end-to-end systems with information learned from traditional algorithms and logic
rules. All algorithms improve performance over the baseline model, with contextualized
embeddings being the most effective. However, knowledge distillation does not seem ben-
eficial as initially reported and contextualized embeddings do not explicitly encode logic
rules. Input gradient techniques seem like a useful scheme to incorporate logic rules, but
need further exploration.

24

References

[1] Kalpesh Krishna, Preethi Jyothi, and Mohit Iyyer, “Revisiting the importance of
encoding logic rules in sentiment classification,” arXiv preprint arXiv:1808.07733, 2018.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Identity mappings in deep
residual networks,” in European Conference on Computer Vision. Springer, 2016, pp.
630–645.

[3] Kalpesh Krishna, Liang Lu, Kevin Gimpel, and Karen Livescu, “A study of all-
convolutional encoders for connectionist temporal classification,” arXiv preprint
arXiv:1710.10398, 2017.

[4] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez, “Right for the right
reasons: Training differentiable models by constraining their explanations,” arXiv
preprint arXiv:1703.03717, 2017.

[5] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[6] Stanley F Chen and Joshua Goodman, “An empirical study of smoothing techniques
for language modeling,” Computer Speech & Language, vol. 13, no. 4, pp. 359–394,
1999.

[7] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini, “Building a large
annotated corpus of english: The penn treebank,” Computational linguistics, vol. 19,
no. 2, pp. 313–330, 1993.

[9] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher, “Pointer sen-
tinel mixture models,” arXiv preprint arXiv:1609.07843, 2016.

[10] Tomáš Mikolov, “Statistical language models based on neural networks,” Presentation
at Google, Mountain View, 2nd April, 2012.

[11] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals, “Recurrent neural network reg-
ularization,” arXiv preprint arXiv:1409.2329, 2014.

[12] Gábor Melis, Chris Dyer, and Phil Blunsom, “On the state of the art of evaluation in
neural language models,” arXiv preprint arXiv:1707.05589, 2017.

[13] Stephen Merity, Nitish Shirish Keskar, and Richard Socher, “Regularizing and opti-
mizing lstm language models,” arXiv preprint arXiv:1708.02182, 2017.

[14] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen, “Break-
ing the softmax bottleneck: a high-rank rnn language model,” arXiv preprint
arXiv:1711.03953, 2017.

[15] Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, and Eric Xing, “Deep neural networks
with massive learned knowledge,” in Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, 2016, pp. 1670–1679.

[16] Christopher Potts, “On the negativity of negation,” in Semantics and Linguistic
Theory, 2010, vol. 20, pp. 636–659.

25

[17] Yoon Kim, “Convolutional neural networks for sentence classification,” arXiv preprint
arXiv:1408.5882, 2014.

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[19] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing, “Harnessing
deep neural networks with logic rules,” arXiv preprint arXiv:1603.06318, 2016.

[20] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, An-
drew Ng, and Christopher Potts, “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proceedings of the 2013 conference on empirical methods
in natural language processing, 2013, pp. 1631–1642.

[21] Bo Pang and Lillian Lee, “Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales,” in Proceedings of the 43rd annual meeting
on association for computational linguistics. Association for Computational Linguistics,
2005, pp. 115–124.

[22] Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng, “Semantic
compositionality through recursive matrix-vector spaces,” in Proceedings of the 2012
joint conference on empirical methods in natural language processing and computational
natural language learning. Association for Computational Linguistics, 2012, pp. 1201–
1211.

[23] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever, “Learning to generate reviews and
discovering sentiment,” arXiv preprint arXiv:1704.01444, 2017.

[24] Shen Li, Zhe Zhao, Tao Liu, Renfen Hu, and Xiaoyong Du, “Initializing convolutional
filters with semantic features for text classification,” in Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing, 2017, pp. 1884–1889.

[25] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer, “Deep contextualized word representations,” arXiv
preprint arXiv:1802.05365, 2018.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org.

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680.

[28] Graham Neubig and Chris Dyer, “Generalizing and hybridizing count-based and neural
language models,” arXiv preprint arXiv:1606.00499, 2016.

[29] Micha l Daniluk, Tim Rocktäschel, Johannes Welbl, and Sebastian Riedel, “Frus-
tratingly short attention spans in neural language modeling,” arXiv preprint
arXiv:1702.04521, 2017.

[30] Andreas Stolcke, “Srilm-an extensible language modeling toolkit,” in Seventh interna-
tional conference on spoken language processing, 2002.

[31] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al., “Tensorflow:
A system for large-scale machine learning.,” in OSDI, 2016, vol. 16, pp. 265–283.

26

http://www.deeplearningbook.org

[32] Ofir Press and Lior Wolf, “Using the output embedding to improve language models,”
arXiv preprint arXiv:1608.05859, 2016.

[33] Kuzman Ganchev, Jennifer Gillenwater, Ben Taskar, et al., “Posterior regularization
for structured latent variable models,” Journal of Machine Learning Research, vol. 11,
no. Jul, pp. 2001–2049, 2010.

[34] Michael Collins, “Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms,” in Proceedings of the ACL-02 confer-
ence on Empirical methods in natural language processing-Volume 10. Association for
Computational Linguistics, 2002, pp. 1–8.

[35] Jeffrey Pennington, Richard Socher, and Christopher Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), 2014, pp. 1532–1543.

[36] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson, “One billion word benchmark for measuring progress
in statistical language modeling,” arXiv preprint arXiv:1312.3005, 2013.

[37] Harris Drucker and Yann Le Cun, “Improving generalization performance using double
backpropagation,” IEEE Transactions on Neural Networks, vol. 3, no. 6, pp. 991–997,
1992.

[38] Yotam Hechtlinger, “Interpretation of prediction models using the input gradient,”
arXiv preprint arXiv:1611.07634, 2016.

[39] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra, “Grad-cam: Visual explanations from deep networks
via gradient-based localization,” See https://arxiv. org/abs/1610.02391 v3, vol. 7, no.
8, 2016.

[40] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,” arXiv preprint
arXiv:1312.6034, 2013.

[41] David Belanger and Andrew McCallum, “Structured prediction energy networks,” in
International Conference on Machine Learning, 2016, pp. 983–992.

[42] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[43] Shixiang Gu and Luca Rigazio, “Towards deep neural network architectures robust to
adversarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[44] Andrew Slavin Ross and Finale Doshi-Velez, “Improving the adversarial robustness and
interpretability of deep neural networks by regularizing their input gradients,” arXiv
preprint arXiv:1711.09404, 2017.

[45] II Ororbia, G Alexander, C Lee Giles, and Daniel Kifer, “Unifying adversarial
training algorithms with flexible deep data gradient regularization,” arXiv preprint
arXiv:1601.07213, 2016.

[46] Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues, “Robust large
margin deep neural networks,” IEEE Transactions on Signal Processing, vol. 65, no.
16, pp. 4265–4280, 2016.

27

[47] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville, “Improved training of wasserstein gans,” in Advances in Neural Information
Processing Systems, 2017, pp. 5769–5779.

[48] Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Raz-
van Pascanu, “Sobolev training for neural networks,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 4281–4290.

[49] Suraj Srinivas and Francois Fleuret, “Knowledge transfer with jacobian matching,”
arXiv preprint arXiv:1803.00443, 2018.

[50] Dániel Varga, Adrián Csiszárik, and Zsolt Zombori, “Gradient regularization improves
accuracy of discriminative models,” arXiv preprint arXiv:1712.09936, 2017.

[51] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[52] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht,
“The marginal value of adaptive gradient methods in machine learning,” in Advances
in Neural Information Processing Systems, 2017, pp. 4151–4161.

[53] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar, “On the convergence of adam and
beyond,” in International Conference on Learning Representations, 2018.

[54] Nils Reimers and Iryna Gurevych, “Reporting score distributions makes a differ-
ence: Performance study of lstm-networks for sequence tagging,” arXiv preprint
arXiv:1707.09861, 2017.

28

	Introduction
	Task Description
	Language Modelling
	Algorithms
	Datasets
	Benchmarks
	Evaluation

	Sentiment Classification
	Linguistics
	Algorithms
	Datasets
	Benchmarks

	Algorithms
	Model Mimicking Loss Function
	Idea
	Teacher Distribution
	Experiments
	Technical Challenges
	Future Work

	Posterior Regularization
	PR for Neural Networks
	Perceptron Algorithm
	Experiments
	Future Work

	Contextualized Word Embeddings
	Experiments
	Future Work

	Input Gradient Regularization
	Past Work
	Model
	Experiments
	Future Work

	Digressions
	Optimization of Language Models
	Averaging Across Random Seeds
	Ambiguity of Sentiment Analysis

	Conclusion
	References

