Encoding Logic Rules in Sentiment Classification

Kalpesh Krishna* UMass Amherst

Preethi Jyothi IIT Bombay

Mohit lyyer UMass Amherst

* Work done at IIT Bombay

Classify a sentence as **positive** or **negative**

Classify a sentence as **positive** or **negative**

this movie has a **great** story

Classify a sentence as **positive** or **negative**

this movie has a **great** story

Sentiment = **Positive**

Not Always Easy!

this movie has a great story

Solution :- Lexicons, Bag of Words

Not Always Easy!

Easy!

this movie has a great story

Solution :- Lexicons, Bag of Words

Not Always Easy!

Easy!

this movie has a great story

Solution :- Lexicons, Bag of Words

Contrastive - this movie is funny, <u>but</u> horribly directed Negation - this is <u>not</u> a movie worth waiting for

Not Always Easy!

Easy!

this movie has a **great** story

Solution :- Lexicons, Bag of Words

Much Harder!

Contrastive - this movie is funny, but horribly directed

Negation - this is <u>not</u> a movie worth waiting for

Logic Rules

this movie is funny, <u>but</u> horribly directed A-<u>but</u>-**B**

Logic Rules

this movie is funny, <u>but</u> horribly directed A-<u>but</u>-**B**

sentiment(A-but-B) = sentiment(B)

Method

Previous Work Our Contributions

Method	Previous Work	Our Contributions
Explicit	Hu et al. (ACL 2016)	

Method	Previous Work	Our Contributions
Explicit	Hu et al. (ACL 2016)	Contribution #1 replication study finds incorrect conclusions

Method	Previous Work	Our Contributions
Explicit	Hu et al. (ACL 2016)	Contribution #1 replication study finds incorrect conclusions
Implicit?		

Method	Previous Work	Our Contributions
Explicit	Hu et al. (ACL 2016)	Contribution #1 replication study finds incorrect conclusions
Implicit?	Peters et al. (NAACL 2018)	

Method	Previous Work	Our Contributions
Explicit	Hu et al. (ACL 2016)	Contribution #1 replication study finds incorrect conclusions
Implicit?	Peters et al. (NAACL 2018)	Contribution #2 ELMo embeddings learn logic rules without explicit supervision

Method	Previous Work	Our Contributions
Explicit	Hu et al. (ACL 2016)	Contribution #1 replication study finds incorrect conclusions
Implicit?	Peters et al. (NAACL 2018)	Contribution #2 ELMo embeddings learn logic rules without explicit supervision

Contribution #3

Robustness of explicit / implicit methods to varying annotator agreement in A-but-B sentences

Digression: Reproducibility

Digression: Reproducibility

Small benchmark datasets (SST, MR, CR)

Significant variation in performance every run (due to random initialization / GPU parallelization)

Digression: Reproducibility

Small benchmark datasets (SST, MR, CR)

Significant variation in performance every run (due to random initialization / GPU parallelization)

Solution :- <u>Average performance</u> over a large number of random seeds (Reimers and Gurevych 2017)

Large Variation (100 seeds)

Large Variation (100 seeds)

Large Variation (100 seeds)

Outline

Method	Previous Work	Our Contributions
Explicit	Hu et al. (ACL 2016)	Contribution #1 replication study finds incorrect conclusions
Implicit?	Peters et al. (NAACL 2018)	Contribution #2 ELMo embeddings learn logic rules without explicit supervision

Contribution #3

Robustness of explicit / implicit methods to varying annotator agreement in A-but-B sentences

Model in Hu et al. 2016

Expectation-Maximization style algorithm

E: Projection (Ganchev et al. 2010)

M: Distillation (Hinton et al. 2014)

this movie is funny, <u>but</u> horribly directed

this movie is funny, <u>but</u> horribly directed

 $p_{\theta}(y|x)$

negative = 0.34
positive = 0.66

this movie is funny, <u>but</u> horribly directed

$$p_{\theta}(y|x)$$

negative = 0.34 **positive = 0.66**

this movie is funny, <u>but</u> horribly directed

$$p_{\theta}(y|x)$$

$$project$$

$$project$$

$$project$$

$$negative = 0.34$$

$$positive = 0.66$$

$$positive = 0.23$$

this movie is funny, <u>but</u> horribly directed

projection is a **convex** optimization problem

this movie is funny, <u>but</u> horribly directed

projection is a **convex** optimization problem new distribution consistent with **logic rules**

M: Distillation (Hinton et al. 2014)

$$L = \lambda H(p_{\text{truth}}, p_{\theta}) + (1 - \lambda) H(q_{\theta}, p_{\theta})$$

train model with projected distribution as soft-label

Hu et al. 2016 algorithm

E: Projection M: Distillation

```
forall minibatch (x,y) {
   p = forward(x)
   q = project(p)
   theta += grad-update(p, q, y)
}
```
Conclusions in Hu et al. 2016

1) Distilled model **better** than single projection

2) Distilled neural network has **significant gain** on SST2 as it **learns A-but-B rule**

Our Conclusions

1) Distilled model better than single projection

2) Distilled neural network has **significant gain** on SST2 as it **learns A-but-B rule**

1) A **single projection** is a good way to explicitly encode logic rules

2) Distilled neural nets aren't learning logic rules

Consistent Trend on A-but-B

Again, a **single** projection at test time is sufficient!

Our Conclusions

1) Distilled model better than single projection

2) Distilled neural network has **significant gain** on SST2 as it **learns A-but-B rule**

1) A **single projection** is a good way to explicitly encode logic rules

2) Distilled neural nets aren't learning logic rules

Outline

Method	Previous Work	Our Contributions
Explicit	Hu et al. (ACL 2016)	Contribution #1 replication study finds incorrect conclusions
Implicit?	Peters et al. (NAACL 2018)	Contribution #2 ELMo embeddings learn logic rules without explicit supervision

Contribution #3

Robustness of explicit / implicit methods to varying annotator agreement in A-but-B sentences

Embeddings from Language Models

Embeddings from Language Models

large language model trained on the 1 Billion Words dataset

Embeddings from Language Models

large language model trained on the 1 Billion Words dataset

learnt representations used for downstream task

Embeddings from Language Models

large language model trained on the 1 Billion Words dataset

learnt representations used for downstream task

Unlike word2vec, these embeddings are contextual

ELMo Results (100 seeds)

ELMo Results (100 seeds)

Model	SST2	A-but-B	A-but-B + negation
CNN (Baseline)	86.0	78.7	80.1
CNN + ELMo	88.9	86.5	87.2
Gain %	2.9	7.8	7.1

ELMo Results (100 seeds)

Model	SST2	A-but-B	A-but-B + negation
CNN (Baseline)	86.0	78.7	80.1
CNN + ELMo	88.9	86.5	87.2
Gain %	2.9	7.8	7.1

Significant improvement, even after averaging!

Is ELMo Learning Logic Rules?

Model	SST2	A-but-B	A-but-B + negation
CNN (Baseline)	86.0	78.7	80.1
CNN + ELMo	88.9	86.5	87.2
Gain %	2.9	7.8	7.1

60% of the improvement is on A-but-B sentences and negations

Is ELMo Learning Logic Rules?

Model	SST2	A-but-B	A-but-B + negation
CNN (Baseline)	86.0	78.7	80.1
CNN + ELMo	88.9	86.5	87.2
Gain %	2.9	7.8	7.1

60% of the improvement is on A-but-B sentences and negations

(Only 24.5% of corpus is A-but-B / negations)

ELMo + Explicit (Projection)

Model	SST2	A-but-B
ELMo	88.9	86.5
ELMo + project	89.0	87.2
Gain %	0.1	0.7

ELMo + Explicit (Projection)

Model	SST2	A-but-B
ELMo	88.9	86.5
ELMo + project	89.0	87.2
Gain %	0.1	0.7

Test-time projection is ineffective for ELMo

ELMo + Explicit (Projection)

Model	SST2	A-but-B
ELMo	88.9	86.5
ELMo + project	89.0	87.2
Gain %	0.1	0.7

Test-time projection is **ineffective** for ELMo

Distance between ELMo distribution and projected distribution is **0.13** (vs **0.26** distillation, **0.27** baseline)

Clustering ELMo Vectors

Cosine similarity between every pair of words

Clustering ELMo Vectors

Cosine similarity between every pair of words

Contrastive (A-<u>but</u>-B)

there are slow and repetitive parts, <u>but</u> it has just enough spice to keep it interesting

word2vec

ELMo

word2vec

ELMo

Clustering for A part and B part in A-but-B sentences for ELMo embeddings

word2vec

ELMo

ELMo Representations learn the scope of a contrastive conjunction!

Outline

Method	Previous Work	Our Contributions
Explicit	Hu et al. (ACL 2016)	Contribution #1 replication study finds incorrect conclusions
Implicit?	Peters et al. (NAACL 2018)	Contribution #2 ELMo embeddings learn logic rules without explicit supervision

Contribution #3

Robustness of explicit / implicit methods to varying annotator agreement in A-but-B sentences

Sentiment is Ambiguous!

beautiful film, but those who have read the book will be disappointed

Sentiment is Ambiguous!

beautiful film, but those who have read the book will be disappointed

nine crowd-workers label each A-but-B sentence as positive / negative / neutral

Sentiment is Ambiguous!

beautiful film, but those who have read the book will be disappointed

nine crowd-workers label each A-but-B sentence as positive / negative / neutral

we test our models on subsets of varying agreement

Consistent trends on all levels of agreement

Key Takeaways

- Carefully perform sentiment classification research
 - variation across runs average across several seeds
 - ambiguous sentences benchmark on subsets of varying annotator agreement
- ELMo embeddings implicitly learn logic rules for sentiment classification

Code + Data

github.com/martiansideofthemoon/logic-rules-sentiment

Key Takeaways

- Carefully perform sentiment classification research
 - variation across runs average across several seeds
 - ambiguous sentences benchmark on subsets of varying annotator agreement
- ELMo embeddings implicitly learn logic rules for sentiment classification

Code + Data

github.com/martiansideofthemoon/logic-rules-sentiment