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Not Always Easy!

this movie has a great story

Solution :- Lexicons, Bag of Words 

Easy!

Contrastive - this movie is funny, but horribly directed  

Negation - this is not a movie worth waiting for

Much Harder!
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this movie is funny, but horribly directed 
A-but-B

sentiment(A-but-B) = sentiment(B)
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Digression: Reproducibility

Small benchmark datasets (SST, MR, CR) 

Significant variation in performance every run 
(due to random initialization / GPU parallelization) 

Solution :- Average performance over a large number 
of random seeds (Reimers and Gurevych 2017)
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Outline
Method Previous Work Our Contributions
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E: Projection (Ganchev et al. 2010)

this movie is funny, but horribly directed

negative = 0.34 
positive = 0.66

negative = 0.77 
positive = 0.23

project

new distribution consistent with logic rules
projection is a convex optimization problem 



M: Distillation (Hinton et al. 2014)

train model with projected distribution as soft-label



Hu et al. 2016 algorithm
E: Projection
M: Distillation

forall minibatch (x,y) {
p = forward(x)
q = project(p)
theta += grad-update(p, q, y)

}
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2) Distilled neural nets aren't learning logic rules
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Consistent Trend on A-but-B

Reported N / A

Averaged 
Gain %

Distillation = 1.9% 
Single Projection = 9.3% 

Distillation + Projection = 8.9%

Again, a single projection at test time is sufficient!
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ELMo Representations
Embeddings from Language Models

large language model trained on the 
1 Billion Words dataset

learnt representations used for 
downstream task

Unlike word2vec, these embeddings are contextual



ELMo Results (100 seeds)



ELMo Results (100 seeds)
Model SST2 A-but-B A-but-B + 

negation

CNN 
(Baseline) 86.0 78.7 80.1

CNN + ELMo 88.9 86.5 87.2

Gain % 2.9 7.8 7.1



ELMo Results (100 seeds)

Significant improvement, even after averaging!
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Test-time projection is ineffective for ELMo

ELMo + Explicit (Projection)

Distance between ELMo distribution and projected 
distribution is 0.13 (vs 0.26 distillation, 0.27 baseline)

Model SST2 A-but-B

ELMo 88.9 86.5

ELMo + project 89.0 87.2

Gain % 0.1 0.7
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ELMo Representations learn the 
scope of a contrastive conjunction!

word2vec ELMo
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Sentiment is Ambiguous!

nine crowd-workers label each A-but-B sentence 
as positive / negative / neutral

we test our models on subsets of varying agreement

beautiful film, but those who have read the book 
will be disappointed



Consistent trends on all levels of agreement



Projection degrades accuracy on high 
agreement sentences!
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Key Takeaways
• Carefully perform sentiment classification research 

• variation across runs  - average across several seeds 

• ambiguous sentences - benchmark on subsets of 
varying annotator agreement 

• ELMo embeddings implicitly learn logic rules for 
sentiment classification

Thank You!

Code + Data  
github.com/martiansideofthemoon/logic-rules-sentiment

http://github.com/martiansideofthemoon/logic-rules-sentiment

