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Abstract

Evaluating the factuality of long-form text gen-
erated by large language models (LMs) is non-
trivial because (1) generations often contain a
mixture of supported and unsupported pieces
of information, making binary judgments of
quality inadequate, and (2) human evaluation
is time-consuming and costly. In this paper, we
introduce FACTSCORE (Factual precision in
Atomicity Score), a new evaluation that breaks
a generation into a series of atomic facts and
computes the percentage of atomic facts sup-
ported by a reliable knowledge source. We
conduct an extensive human evaluation to ob-
tain FACTSCOREs of people biographies gen-
erated by several state-of-the-art commercial
LMs—InstructGPT, ChatGPT, and the retrieval-
augmented PerplexityAI—and report new anal-
ysis demonstrating the need for such a fine-
grained score (e.g., ChatGPT only achieves
58%). Since human evaluation is costly, we
also introduce an automated model that es-
timates FACTSCORE, using retrieval and a
strong language model, with less than a 2%
error rate. Finally, we use this automated met-
ric to evaluate 6,500 generations from a new set
of 13 recent LMs that would have cost $26K
if evaluated by humans, with various findings:
GPT-4 and ChatGPT are more factual than pub-
lic models, and Vicuna and Alpaca are some of
the best public models.

1 Introduction

Long-form text generated by large language models
(LMs) has widely been used for a range of appli-
cations (Brown et al., 2020; Ouyang et al., 2022).
Nonetheless, evaluating their factual precision—
whether each piece of information conveyed in a
generation is factually accurate—remains challeng-
ing for two reasons. First, a generation consists of
a large number of pieces of information that are a
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Figure 1: An overview of FACTSCORE, a fraction of
atomic facts (pieces of information) supported by a
given knowledge source. FACTSCORE allows a more
fine-grained evaluation of factual precision, e.g., in the
figure, the top model gets a score of 66.7% and the
bottom model gets 10.0%, whereas prior work would
assign 0.0 to both. FACTSCORE can either be based
on human evaluation, or be automated, which allows
evaluation of a large set of LMs with no human efforts.

mixture of true or false,1 making a binary judgment
inadequate (Pagnoni et al., 2021). Second, validat-
ing every piece of information is time-consuming
and costly.

In this paper, we introduce FACTSCORE
(Factual precision in Atomicity Score), a new eval-
uation of an LM that represents the percentage of
atomic facts (pieces of information) supported by a
given knowledge source. Computing FACTSCORE

involves (1) breaking a generation into a series of
atomic facts—short statements that each contain
one piece of information (Nenkova and Passonneau,
2004; Shapira et al., 2019; Zhang and Bansal, 2021;
Liu et al., 2022), and (2) assigning a binary label

1Even a single sentence consists of multiple pieces of
information (e.g., 4.4 per sentence in ChatGPT, 40% of which
are a mixture of supported and unsupported information).



to each atomic fact, allowing a fine-grained evalua-
tion of factual precision. We evaluate FACTSCORE

on the task of generating people biographies be-
cause generations consist of verifiable statements
rather than debatable or subjective ones, and the
scope is broad (i.e., covering diverse nationalities,
professions, and levels of rarity).

We perform extensive human annotations to ob-
tain FACTSCOREs of three state-of-the-art, com-
mercially available LMs: InstructGPT (Ouyang
et al., 2022), ChatGPT (OpenAI, 2022), and search-
augmented PerplexityAI.2 We recruit fact-checking
experts to validate atomic facts for 505 model gen-
erations, which we confirm to be expensive (76
hours of work and $2K in total). Our results indi-
cate that commercially available LMs are riddled
with errors, having FACTSCOREs of 42%, 58%
and 71%, respectively. Their FACTSCOREs signif-
icantly drop as the rarity of the entities increases,
e.g., 80% → 16% for ChatGPT.

Since human evaluation is costly, we next in-
troduce an automatic evaluation of FACTSCORE

through a model that estimates a FACTSCORE for
a given LM. Our estimator decomposes genera-
tions into atomic facts and validates each based
on a given knowledge source, leveraging retrieval
from the given knowledge source and strong lan-
guage models. Our estimator closely approximates
FACTSCORE with an error rate of < 2% and can
be applied to a range of new LMs at scale with no
human effort. Our case study evaluates 6,500 gen-
erations from 13 LMs that could have cost $26K,
with various findings: GPT-4 (OpenAI, 2023) and
ChatGPT are far less factual than humans but are
much better than public models, and there is a large
variance between public models, with Vicuna (Chi-
ang et al., 2023) and Alpaca (Taori et al., 2023)
being some of the best.

In summary, our contributions are as follows.

1. We introduce FACTSCORE, a new evaluation
of factual precision of LMs by breaking their
generations into atomic facts and validating
each against a given knowledge source. Human
evaluation reveals that the state-of-the-art LMs
with and without search have low FACTSCOREs
(42.5–71.5%).

2. We introduce a model that approximates
FACTSCORE with an error rate of < 2%, al-
lowing evaluation of a large set of new LMs
without manual human efforts.
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3. We suggest future work to extend FACTSCORE

for a broader set of generations (e.g., open-
ended generation) and to further improve the
estimator.

2 Related Work

Factual precision in text generation. The issue
of factual precision in text generation has been an
active area of research in NLP. Most prior work
studies factual precision of models supervised for
a specific problem such as dialogue (Shuster et al.,
2021), or focuses on question answering with short
answers (Kadavath et al., 2022; Kandpal et al.,
2022; Mallen et al., 2022; Nori et al., 2023).

More recent work has studied factual precision
of text generation beyond short answers. Lee et al.
(2022) evaluates the factual precision with proxy
metrics, e.g., whether named entities in a gener-
ation appear in an article of the topic. Gao et al.
(2022) and Liu et al. (2023a) verify the precision of
the citations (attributions) provided by the model.
A concurrent work by Manakul et al. (2023) au-
tomates the identification of factual errors in LM
generations without using any knowledge source;
we use their method as a baseline estimator in Sec-
tion 4. In contrast, our work (1) considers much
longer text generation3 from a variety of state-of-
the-art LMs with and without search, (2) provides
their fine-grained evaluation both by human experts
and through an automated evaluator that closely ap-
proaches humans, and (3) applies it to a large set
of LMs at scale.

Fact Verification. Our work is closely related to
prior work on fact verification (Thorne et al., 2018;
Wadden et al., 2020) where claim sentences are
automatically checked against a large knowledge
source like Wikipedia or scientific literature. Most
literature assumes a single, atomic claim, some-
times modeled with surrounding context (Nakov
et al., 2018; Mihaylova et al., 2019; Shaar et al.,
2022). There also has been work that verifies a
longer sentence or text through decomposition to
atomic facts (Fan et al., 2020; Wright et al., 2022;
Chen et al., 2022; Kamoi et al., 2023) from which
we take inspiration. The primary difference be-
tween fact verification literature and our work is
that we focus on long-form model-generated text
rather than sentence-level human-written claims.

3Consisting of 110–151 words (Table 2), in contrast to
18–29 in Gao et al. (2022) and 65 in Liu et al. (2023a).

https://www.perplexity.ai/


Model-based Evaluation. Prior work has used
learned models to define automated evaluation
scores (Zhang et al., 2020; Liu et al., 2023b). This
includes model-based evaluation in summarization
that considers the consistency between a summary
and a source document using QA or NLI (Kryscin-
ski et al., 2020; Wang et al., 2020; Fabbri et al.,
2022; Deutsch et al., 2021; Laban et al., 2022). We
take inspiration from this work, and evaluate fac-
tual precision of LM generations by considering
whether pieces of information are supported by a
large text corpus.

3 FACTSCORE: Evaluating Factual
Precision of Long-form Text Generation

We introduce FACTSCORE, a new evaluation of an
LM that considers the factual precision of atomic
facts generated by the LM. We perform human
evaluations to calculate FACTSCOREs of the state-
of-the-art LMs (Section 3.3) and discuss both quan-
titative (Section 3.4) and qualitative (Section 3.5)
results. FACTSCORE allows rigorous and fine-
grained evaluation of factual precision, but is time-
consuming and costly, which we address by auto-
matically estimating FACTSCORE in Section 4.

3.1 Definition

FACTSCORE is based on two key ideas.

Key idea 1: Atomic fact as a unit. Long-form
text consists of many pieces of information that can
each be either true or false. Prior work has explored
using a sentence as a unit; however, even a single
sentence is a mix of supported and unsupported
facts, e.g., in 40% of the cases with ChatGPT. Pre-
vious and concurrent work either (1) defines an
additional label of partial support (Manakul
et al., 2023; Liu et al., 2023a) whose definition
may be subjective and can lead to low agreement,
or (2) takes the strictest definition of support
that requires every piece of information to be sup-
ported (Rashkin et al., 2021; Gao et al., 2022),
which ignores the partial support cases, e.g., in
an example in Figure 1, this approach assigns 0.0
to both generations even though the first generation
is considerably more accurate than the second.

In this paper, we define an atomic fact as a short
sentence conveying one piece of information (ex-
amples in Figure 1 and Table 1), similar to summa-
rization content units (SCUs; Nenkova and Passon-
neau (2004)). An atomic fact is a more fundamental
unit than a sentence for a piece of information to

Sentence: Thierry Henry (born 17 August 1977) is a French
professional football coach, pundit, and former player.

Fact 1: Thierry Henry was born on 17 August 1977.
Fact 2: Thierry Henry is French.
Fact 3: Thierry Henry is a professional football coach.
Fact 4: Thierry Henry is a football pundit.
Fact 5: Thierry Henry is a former football player.

Table 1: Examples of our process of decomposing sen-
tences into atomic facts, each conveying a single piece
of information.

be validated, and provides a more fine-grained eval-
uation, e.g., in Figure 1, rating the first generation
higher than the second.

Key Idea 2: Factual precision as a function of a
given knowledge source. Prior work often consid-
ers factual precision as a single global truth (Man-
akul et al., 2023). In contrast, we adopt a per-
spective that the truthfulness of a statement should
depend on a particular knowledge source that end
users consider to be trustworthy and reliable. There-
fore, instead of whether an atomic fact is globally
true or false, we consider whether it is supported by
a given source of knowledge. This has been used in
the fact verification literature (Wadden et al., 2022)
where conflict of information between different
sources is relatively common.

Definition. Let M be a language model to be eval-
uated, X be a set of prompts, and C be a knowledge
source. Consider a response y = Mx for x ∈ X
and Ay, a list of atomic facts in y. A FACTSCORE

of M is defined as follows.

f(y) =
1

|Ay|
∑
a∈Ay

[a is supported by C],

FACTSCORE(M) = Ex∈X [f(Mx)|Mx responds].

Mx responds means M did not abstain from re-
sponding to the prompt x. This definition assumes
the following:

1. Whether or not an atomic fact is supported by
C is undebatable.

2. Every atomic fact in Ay has an equal weight of
importance, following Krishna et al. (2023).

3. Pieces of information in C do not conflict or
overlap with each other.

In the rest of the paper, we propose to use people
biographies as X and Wikipedia as C because they
satisfy these assumptions to a reasonable degree
(Section 3.3). We discuss in which cases these



assumptions hold or may not hold in more detail in
the Limitation section.

FACTSCORE considers precision but not recall,
e.g., a model that abstains from answering too often
or generates text with fewer facts may have a higher
FACTSCORE. We leave factual recall for future
work (more discussion in the Limitation section)
and recommend using FACTSCORE in conjunction
with the average number of atomic facts produced.

3.2 Studied LMs

We evaluate three LMs (referred to as LMSUBJ,4

an LM as a subject): (1) InstructGPT
(text-davinci-003, updated from Ouyang et al.
(2022)), (2) ChatGPT (OpenAI, 2022), and (3)
PerplexityAI,2 which incorporates a search engine
with a language model.5

3.3 Data

We perform human evaluation of factual precision
based on our definition. We prompt the LMSUBJ

to generate people biographies and evaluate them
against Wikipedia for the following reasons.

• Biographies are objective (not subjective or de-
batable) and contain specific (not vague) infor-
mation, satisfying Assumption 1.

• Biographies allow evaluation across diverse na-
tionalities, professions, and levels of rarities.

• Wikipedia offers reasonable coverage of infor-
mation about people and is reasonably self-
consistent, satisfying Assumption 3.

Data collection. We carefully design an anno-
tation pipeline to assign a factual precision to a
long-form generation through the following steps.

Step 0: Sampling people entities. We sample
183 people entities from Wikidata who have corre-
sponding Wikipedia pages. We categorize entities
based on their frequency and demographic infor-
mation (nationality) and choose entities to annotate
from a uniform distribution over categories. See
Appendix A.1 for details.6

4To distinguish from an LM as an evaluator (Section 4).
5Wrigley (2023) estimates that it feeds snippets from a

commercial search engine to the OpenAI API with instructions
to only generate information provided in search results, along
with citations. Liu et al. (2023a) reports that PerplexityAI
provides the top utilities and citations over a range of other
search-incorporated LMs.

6A concurrent work (Manakul et al., 2023) also collected
the biography data focusing on the frequent entities whose
Wikipedia pages are long. This difference leads to significant
differences in factual precision as discussed in Section 3.4.

Step 1: Obtaining generations. We feed a prompt
“Tell me a bio of <entity>” to the LMSUBJ

and take a generation as it is.7 We implement rules
to identify generations that abstain from answering,
filter them out and send the rest of the generations
to the next steps.

Step 2: Atomic facts generation. Human annota-
tors break a generation into a series of atomic facts
(Section 3.1). To save annotation time, we provide
atomic facts broken down by InstructGPT which
human annotators can take and revise. Details pro-
vided in Appendix A.2.

Step 3: Labeling factual precision & editing.
We ask another set of human annotators to assign
each atomic fact one of three labels. If the atomic
fact is clearly not related to the prompt, and thus
should be removed from the bio without a valida-
tion step, they assign Irrelevant. If the fact is
relevant, they validate the fact based on the En-
glish Wikipedia, and label either Supported or
Not-supported. Additionally, annotators also edit
the text to make it factually correct. They are asked
to correct factual errors, or remove the sentence
if the information in the sentence is entirely off.
They are asked not to revise the text to improve the
coverage of the information or dimensions beyond
factual precision.

We recruit freelancers through Upwork and pay
15–25 USD per hour. We recruit fact-checking
experts for Step 3. Annotation requires extensive
efforts and time, e.g., completing Step 3 for three
pieces of generation from three LMs takes 25 min-
utes on average. We assign two freelancers for
10% of the data and calculate the agreement rate:
96%, 90% and 88% for InstructGPT, ChatGPT and
PerplexityAI, respectively. Section 3.5 discusses
disagreement cases in more detail. More details
about the annotation process are provided in Ap-
pendix A.3.

3.4 Quantitative Analysis

Statistics of labels are reported in Table 2.

All LMSUBJs struggle with factual precision er-
rors. Factual precisions of InstructGPT and Chat-
GPT are 42.5% and 58.3%, respectively. Perplex-
ityAI, which uses a commercial search engine and

7While different instructions or sampling may lead to dif-
ferent results, we assume every LMSUBJ is a black box and take
a generation with a minimal prompt. In fact, LMs are often
being served with additional instructions hidden to end users
to provide the best possible quality, e.g., PerplexityAI.
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Figure 2: Top: % of Supported across varying frequency levels of human entities. Bottom: % of Supported over
relative positions in generation. There are significantly fewer supported facts (more precision errors) as the rarity of
the entities increases and the position of the fact is later.

InstGPT ChatGPT PPLAI

Use search ✗ ✗ ✓
% responding 99.5 85.8 90.7
# tokens / response 110.6 154.5 151.0
# sentences / response 6.2 7.9 9.8
# facts / response 26.3 34.7 40.8

Statistics of the labels
Supported 42.3 50.0 64.9
Not-supported 43.2 27.5 11.1
Irrelevant 14.0 8.3 14.8
Abstains from answering 0.5 14.2 9.3

FACTSCORE 42.5 58.3 71.5

Table 2: Statistics of the data. InstGPT and PPLAI
respectively refer to InstructGPT and PerplexityAI. %
responding indicates % of generations that do not ab-
stain from responding. # tokens is based on white space
tokenization. Statistics of the labels are macro-averaged
over prompts.

thus should have perfect precision if directly copy-
ing the text from the correct Wikipedia page, has
a factual precision of 71.5%. We qualitatively ana-
lyze their error cases in Section 3.5.

ChatGPT and PerplexityAI often abstain from
answering which presumably improves their fac-
tual precision. InstructGPT rarely abstains from
answering, likely because it is not trained to do so.

Irrelevant facts are frequent in PerplexityAI.
Irrelevant facts are those that either (a) have de-
pendencies to previous facts in a generation that
turn out to be unsupported, or (b) are irrelevant
to the prompt independent from other facts in a
generation (examples in Appendix A.4). We find
that (b) rarely happens with InstructGPT and Chat-

GPT but happens considerably with PerplexityAI,
because PerplexityAI often directly copies search
results even if they are largely irrelevant to the in-
put prompt. This is in agreement with a concurrent
work from Liu et al. (2023a) that shows generative
search engines like PerplexityAI copy incorrect
search results and generate text that is irrelevant to
the input query.

Error rates are higher for rarer entities. Fig-
ure 2 (top) shows factual precision over varying
frequency levels of topic entities (humans) in the
pretraining corpora (see Appendix A.1). There is
a notable decrease in FACTSCORE as the rarity of
entities increases, consistently across all LMSUBJs.
This is in agreement with Kandpal et al. (2022)
and Mallen et al. (2022) which show that short
question answering (QA) accuracy is highly corre-
lated with the entity frequencies in the pretraining
data. Drop in the long-form generation is over-
all more significant than in QA (e.g., an error rate
increases by 4.0x, compared to 1.8x in Kandpal
et al., 2022). In contrast to Kandpal et al. (2022)
and Mallen et al. (2022) who report QA accuracy
of models with retrieval is robust to the rarity of
entities, FACTSCORE of PerplexityAI still signif-
icantly drops as entities are rarer: a relative drop
of 50% and 64% observed at the atomic-level and
sentence-level, respectively.

Error rates are higher for facts mentioned later
in the generation. Figure 2 (bottom) reports fac-
tual precision over relative positions in a genera-
tion, e.g., 0–20% indicates the first 20% part of the
generation. Across all LMs, the later part of the



Category % Example

Single-sentence
contradiction

33.3 Gen On November 25th, 2023, Glover Teixeira became an American citizen. Wiki In November 2020, Teixeira became an
American citizen.

(words) Gen [Eric Hacker] was named the International League Pitcher of the Year. Wiki [Eric Hacker] was named the IL Pitcher of the
Week.

Single-sentence
contradiction

10.0 Gen William Waldegrave’s grandfather was James II and VII. Wiki His father’s title was created ... for the diplomat and
ambassador James Waldegrave, 1st Earl Waldegrave, whose grandfather was James II and VII.

(beyond words) Gen She has appeared in several successful films such as (...) and Zero (2018). Wiki: Zero was a commercial failure.

Page-level contra-
diction

23.3 Gen Some of [Julia Faye’s] notable films include ... "Cleopatra" (1934). Comment No mention of Cleopatra on the Julia Faye
page, and no mention of Julia Faye on the Cleopatra page.
Gen [Kang Ji-hwan] has donated money to various charities and organizations over the years. Comment No such mention on the
Kang Ji-hwan page.

Subjective 16.7 Gen His achievements, as an actor and as a cultural force, will surely prove to be as heroic as those of the characters he
portrayed. Wiki Culture writer Steve Rose, in The Guardian, wrote: “Chadwick Boseman began his career playing African
American icons and pioneers; he ends it as one himself. His [...] achievements, as an actor and as a cultural force, will surely
prove to be as heroic as those of the characters he portrayed.”

Fact is irrelevant 3.3 Gen [Zamfir Arbore]’s life is not well-documented, and there is little information available about him.

Wiki is inconsis-
tent & wrong

3.3 Gen Kick (2014) that brought [Sajid Nadiadwala] various debutant director awards. Wiki 2015, IIFA Award for Debut Director,
Kick. (...) Kick brought him various debutant director awards. Comment The first text is from a table that indicates he won one
award (accurate). The second is inaccurate, incorrectly citing a news article.

Annotation error 10.0 Gen [Zamfir Arbore] was part of the staff of Românul. Wiki The Românul staff came to include Zamfir Arbore. Comment
Mentioned in the Românul page but not in the Zamfir Arbore page.

Table 3: Categorization of precision errors (Not-supported) from PerplexityAI (Section 3.5). Gen indicates the
generation from PerplexityAI, and Wiki indicates evidence text from Wikipedia. Comment indicates our comments.

generation has significantly worse precision. This
is likely because (a) information mentioned earlier
is more frequently mentioned in the pretraining
data (e.g., nationality, profession), and (b) error
propagation affects the later part of the generation.

This also implies that evaluating LMs solely
based on short answers or short generations may
not provide an adequate assessment of their factual
precision, as it fails to account for errors that arise
in later stages of generation.

3.5 Qualitative Analysis

Analysis of Not-supported. One of the surpris-
ing findings in Section 3.4 is that a FACTSCORE

of PerplexityAI (71.5%) is lower than expected
despite having access to the search engine. To bet-
ter understand its errors, we categorize 30 random
samples whose label is Not-supported (Table 3).

• Single-sentence contradiction: A single sen-
tence from Wikipedia provides direct contradic-
tion to the generation, either at a word level
(numbers, dates, or entities) or beyond.

• Page-level contradiction: Errors found after
reading the entire page, often because a fact
that should have been mentioned in Wikipedia if
true is missing, e.g., whether the subject appears
in a particular film.

• Subjective: Generation is subjective, often be-
cause PerplexityAI copies subjective text from
Wikipedia, e.g., directly copying a quote from a

journalist without realizing it.

• Fact is irrelevant: Generation is irrelevant to the
subject due to a search error.

• Wiki is inconsistent & wrong: In the example,
Wikipedia indicates that the subject won one
award from the film Kick, but also includes text
that they won multiple awards from Kick, which
is inaccurate and cited a news article that does
not support the claim.

• Annotation error: Annotators assign incorrect
labels, typically because the information is
not mentioned in the subject’s Wikipedia page
(likely because it is insignificant).

We also find that, although PerplexityAI provides
citations to the references, citations have little cor-
relation with factual precision. 36.0% and 37.6%
of supported and unsupported sentences have ci-
tations, respectively, indicating that unsupported
sentences are in fact marginally more likely to have
citations, and the overall citation ratio is low. To-
gether with independent findings from Liu et al.
(2023a) that citations may have low precision and
recall, this indicates that commercial language
models that incorporate search and provide cita-
tions may not be as reliable as expected.

Analysis of disagreement cases. We categorize
disagreement cases in Appendix A. In summary,
70% are due to an inherent debatability on whether
or not the fact is supported by a given source of



knowledge, not satisfying Assumption 2 in Sec-
tion 3.1. This is because there can be multiple
interpretations of a fact, it is debatable whether or
not an information can be inferred from a piece of
text, or the atomic fact is subjective. For instance:

• [subject] is an inventor: the subject is
widely known as an inventor of an object, but
later turns out that they did not invent it (instead,
commercialized it).

• [subject] is a producer: the subject is
widely known as another profession (e.g., a
singer) but produced one music video.

Nonetheless, since our agreement rate is fairly high
(91%), we think such cases are rare in our particular
domain of people biographies. We include more
discussion on other domains that such cases may
be more frequent in the Limitation section.

4 Estimating FACTSCORE for Automatic
Evaluation

Human evaluation of factual precision is costly ($4
per generation) (Bohnet et al., 2022; Krishna et al.,
2023) because validating every atomic fact against
a large knowledge source is time-consuming and
one generation contains many (26–41) atomic facts.
This prevents LM developers and practitioners
from evaluating the factual precision in long-form
generation of a new LMSUBJ at scale. It is ideal
to have a system that automates this process, ide-
ally without any dependency on a LMSUBJ. In
this context, we introduce a model that estimates
FACTSCORE. This estimator takes a set of genera-
tions and automatically computes a FACTSCORE,
and can be applied to any LMSUBJ.

We describe our model (Section 4.1) and demon-
strate its accuracy against human evaluation (Sec-
tion 4.2). FACTSCORE estimated by our model is
then used to evaluate twelve LMs (Section 4.3).

4.1 Model

Our estimator of FACTSCORE first breaks a gener-
ation into a series of atomic facts and then validates
each against the given knowledge source. We find
taking model-generated atomic facts generated by
InstructGPT (used in data collection in Section 3.3)
effective and close to human, consistent with find-
ings from prior work (Chen et al., 2022). This
section thus focuses on how to validate each atomic
fact against a given knowledge source.

4.1.1 Methods
We consider variants of estimators, all based on
zero-shot prompting of an LM referred to as an
LMEVAL to distinguish from a LMSUBJ. Specifi-
cally, a prompt—whose construction methods dif-
fer across five variants—is fed into an LMEVAL.
The prediction is then made by comparing the con-
ditional probability of True and False from the
LMEVAL. If the logit values are unavailable (e.g.,
commercial LMs like ChatGPT), the prediction is
made based on whether the generated text contains
True or False.8

The five variants we consider are as follows.

No-context LM uses <atomic-fact> True or
False? as a prompt. This closely resembles Kada-
vath et al. (2022) who performed model calibration
in short-form question answering.

Self-check LM is a method from a concurrent work
by Manakul et al. (2023). Self-check LM needs
multiple samples generated from the LMSUBJ. It val-
idates the given atomic fact by prompting LMEVAL

conditioning on each generated sample,9 making
judgment (Supported or not) from each, and ag-
gregates the results through a majority vote. This
method assumes (1) the LMSUBJ is available at the
time of evaluation and (2) the outputs from the
LMSUBJ are nondeterministic.

Retrieve→LM retrieves passages from the given
knowledge source and prompts the LMEVAL to
judge whether or not the given atomic fact is sup-
ported by retrieved passages. Specifically, it first
retrieves k passages, then constructs the prompt by
concatenating retrieved passages, the given atomic
fact, and “True or False?”. The prediction is
made based on the LMEVAL given the prompt.

Nonparametric Probability (NP) computes a non-
parametric likelihood and make a judgment based
on thresholding, instead of prompting the LMEVAL.
Specifically, it masks out each token in the atomic
fact, computes its nonparametric probability us-
ing a nonparametric masked LM from Min et al.
(2023), and averages probabilities over all tokens.
The final prediction is made based on thresholding.

8An alternative prompting method is a QA approach, which
generates a question and compares the answer to it and the
expected answer (Kryscinski et al., 2020; Wang et al., 2020;
Gao et al., 2022; Manakul et al., 2023). We empirically find
our prompting better than the QA approach due to a lack of
control in questions being generated. Details in Appendix B.1.

9Manakul et al. (2023) uses BERTScore and a supervised
question answering system instead of LM prompting, however,
we find LM prompting to be significantly better.



Retrieve→LM + NP is an ensemble of
Retrieve→LM and NP which assigns Supported
only if both methods assign Supported.

4.1.2 Implementation details
As an LMEVAL, we use the best open LM and the
best commercial LM at the time of conducting ex-
periments: LLAMA 65B (Touvron et al., 2023) and
LLAMA 7B trained on Super Natural Instructions
(Inst-LLAMA, Wang et al., 2022) as the former,
and ChatGPT (OpenAI, 2022) as the latter. For
computing nonparametric probabilities, we use a
single-mask variant of NPM with BM25 as in the
original paper (Min et al., 2023), and use 0.3 as a
thresholding hyperparameter.

For passage retrieval, we use Generalizable T5-
based Retrievers (GTR, a large variant), an unsu-
pervised dense passage retrieval system (Ni et al.,
2022). We restrict retrieved passages to be from
the topic entity’s page, and use k = 5. We find our
estimator is not sensitive to the choice of a retrieval
system (ablations provided in Appendix B.1). As
a retrieval corpus, we use the English Wikipedia
from 04/01/2023 which is around the time the data
annotation was completed, and split each page into
passages with up to 256 tokens.

4.2 Evaluation of Estimators

We use the data in Section 3.3 as evaluation data.
We use two metrics: (1) how well the model vali-
dates each individual atomic fact (F1MICRO ↑) and
(2) how close the estimated FACTSCORE is to the
ground truth FACTSCORE (Error Rate ↓).

F1MICRO This metric assumes oracle atomic facts
(atomic facts by human experts) are given, and
evaluates how good the estimator is in identifying
facts that are not Supported (NS). Let G and P be
sets of atomic facts in a set of generations that have
Not-supported as a ground truth label and as a
predicted label, respectively:

P =
P ∩ G
P

, R =
P ∩ G
G

, F1MICRO =
2 · P · R
P+ R

We call them MICRO because they consider individ-
ual decisions rather than aggregated estimation.

Error Rate (ER) ER considers differences be-
tween the ground truth and the estimation. Let M
be an LM to be evaluated, FS(M) be a ground truth
and FSEST(M) be an estimation by the model:

ER = |FS(M)− FSEST(M)|.

Supported Not-Supported

Evaluator A

Evaluator B

Ground truth Ground truth = 80%

Estimated = 90% 
AccuracyMICRO= 90% 
Error Rate = 10% 

Estimated =75% 
AccuracyMICRO = 85% 
Error Rate = 5%

Supported Not-Supported

Evaluator A 
Estimated = 90%

Evaluator B 
Estimated = 75%

Ground truth 
80%

AccuracyMICRO= 67%        ER = 10% 

AccuracyMICRO = 57%        ER = 5%

Supported Not-Supported

Evaluator A 
Estimated = 85%

Evaluator B 
Estimated = 80%

Ground truth 
75%

F1MICRO= 75%        ER = 10% 

F1MICRO = 67%        ER = 5%

Figure 3: A case in which F1MICRO and Error Rate (ER)
rank two evaluators differently. Evaluator A is better in
F1MICRO, and Evaluator B is better in ER.

F1MICRO cares about the individual decision, while
ER cares about the aggregated estimation. An eval-
uator that has a high (better) F1MICRO but always
overestimates or underestimates factual precision
may have a higher (worse) ER, e.g., Evaluator A in
Figure 3. Conversely, an evaluator that has a lower
(worse) F1MICRO but is not biased toward overesti-
mation nor underestimation may have a lower (bet-
ter) ER, e.g., Evaluator B in Figure 3. Prior work in
model-based evaluation mainly reports aggregated
scores since the goal is a comparison between dif-
ferent systems being evaluated (Zhang et al., 2020;
Rashkin et al., 2021; Gao et al., 2022) while we re-
port both to see the relationship between two types
of metrics. F1MICRO and ER are also closely related
to segment-level and system-level correlations to
human judgments respectively, which have been
extensively used in developing evaluation metrics
in machine translation (Ma et al., 2019; Thompson
and Post, 2020) and summarization (Bhandari et al.,
2020; Deutsch et al., 2021).

4.2.1 Results on F1MICRO

Results are reported in Table 4.

Retrieval significantly helps. Self-check LM
outperforms no-context LM by 4–11%, which con-
firms findings from Manakul et al. (2023). How-
ever, both significantly underperform methods that
use retrieval. This is in contrast to Manakul et al.
(2023) that reports that Self-check without retrieval
achieves performance that is close to that with re-
trieval, likely because the data in Manakul et al.
(2023) contains more frequent entities.

Adding NP improves Retrieve→LM by 2–9%.
This is likely because Retrieve→LM often makes
incorrect predictions when there is a strong bias
from an LM or there are distracting passages,



Evaluator retrv LMSUBJ

InstGPT ChatGPT PPLAI

Always Supported - 0.0 0.0 0.0
Always Not-supported - 71.4 58.3 30.9
Random - 52.2 45.0 25.7

No-context LM ✗ 61.2 52.2 31.4
Self-check LM ✗ 66.0 48.4 -

Retrieve→LM ✓ 78.7 61.9 51.1
NP ✓ 70.0 56.6 51.4
Retrieve→LM + NP ✓ 83.2 70.5 53.3

Table 4: Results in F1MICRO using Inst-LLAMA 7B as
an LMEVAL. ‘retrv’ indicates whether or not retrieval
is used. Self-check is not applicable to PerplexityAI
whose outputs are semi-deterministic. Bold indicates
the best performance.

and considering nonparametric probabilities makes
the model more robust to these factors. For in-
stance, given an unsupported fact Samuel Oboh
is Nigerian, No-context LM, Self-check LM and
Retrieve→LM predict Supported due to a strong
name-nationality bias. NPM correctly predicts
Not-supported based on a passage Samuel Oboh
... is a Canadian architect, manager, ....

Using a stronger LMEVAL significantly helps.
Table 5 reports a comparison across different
choices of an LMEVAL. Within the same method,
Inst-LLAMA 7B outperforms LLAMA 65B, and
ChatGPT outperforms both. Using retrieval is crit-
ical across all models, e.g., the best no-context
model based on ChatGPT is underperformed by all
models with retrieval. Using NP helps LLAMA-
based models but not ChatGPT, likely because
ChatGPT is less affected by incorrect prior from
the LM or distracting passages.

Appendix B.1 includes a qualitative analysis of
the best model based on ChatGPT. The 70% of the
errors are due to retrieved passages not providing
direct evidence (either support or contradiction).

4.2.2 Results on Error rate
Table 6 reports ER: a gap between the ground truth
and the estimated FACTSCOREs.

When a LMSUBJ is InstructGPT or ChatGPT,
LLAMA+NP gives the lowest ER: 1.5% and 0.4%,
respectively. Although ChatGPT achieves the best
F1MICRO, it has a worse ER. This is because most
errors from ChatGPT are incorrectly assigning
Supported to Not-supported facts, overestimat-
ing FACTSCORE. In contrast, LLAMA+NP is not
biased toward overestimation or underestimation

Evaluator retrv LMSUBJ

InstGPT ChatGPT PPLAI

LLAMA 65B
No-context LM ✗ 22.2 20.0 18.6
Retrieve→LM ✓ 54.6 42.1 36.1
Retrieve→LM + NP ✓ 80.1 67.1 55.1

Inst-LLAMA 7B
No-context LM ✗ 61.2 52.2 31.4
Retrieve→LM ✓ 78.7 61.9 51.1
Retrieve→LM + NP ✓ 83.2 70.5 53.3

ChatGPT
No-context LM ✗ 40.0 25.4 25.4
Retrieve→LM ✓ 87.5 80.2 65.8
Retrieve→LM + NP ✓ 86.6 77.8 60.8

Table 5: Ablation in F1MICRO on the choices of LMEVAL.
‘retrv’ indicates whether or not retrieval is used. Bold
and Red bold indicate the best F1 within open-access
LMs and commercial LMs, respectively.

of the factual precision, resulting in an aggregated
factual precision to be closer to the ground truth.

The trend is different with PerplexityAI: ensem-
ble methods give a higher ER due to an underesti-
mation of FACTSCORE. This discrepancy between
InstructGPT/ChatGPT and PerplexityAI may be
due to (1) human-written text vs. model-generated
text given that PerplexityAI often copies Wikipedia
text or (2) a large portion of facts being Supported.

To summarize, there is a trade-off between (a)
the evaluator based on ChatGPT that is better in
individual decisions but overestimates factual pre-
cision and (b) the evaluator based on LLAMA+NP
that is more accurate in aggregated estimation but
underestimates human text or highly supported text.
This is similar to the trade-off between system-
level and segment-level correlations in summa-
rization evaluation, which often produce different
rankings (Bhandari et al., 2020; Deutsch et al.,
2021). Nevertheless, both evaluators give consis-
tently correct ranking between three LMSUBJs, and
Section 4.3 show scores from two estimators are
largely correlated across 10+ LMSUBJs (0.99 Pear-
son’s r). We recommend users try both variants of
our estimator when evaluating a new LMSUBJ, and
choose the evaluator that is most suitable for their
downstream application.

4.3 Evaluation of New LMs

Our estimator allows evaluating factual precision
of a large set of new LMs at scale with no human
efforts. As a case study, we evaluate ten new LMs
that came out within two months at the time of con-



Evaluator retrv SUBJ: InstGPT SUBJ: ChatGPT SUBJ: PPLAI ranking
ER FS ER FS ER FS

Human 42.5 58.3 71.5
Tr

iv
ia

l Always Supported 57.5 100.0+ 41.7 100.0+ 28.5 100.0+ ✗
Always Not-supported 42.5 0.0− 58.3 0.0− 71.5 0.0− ✗
Always Random 7.5 50.0+ 8.3 50.0− 21.5 50.0− ✗

I-
L

L
A

M
A No-context LM ✗ 7.1 49.6+ 7.8 50.5− 34.7 36.8− ✗

NP ✓ 14.8 57.3+ 13.7 72.0+ 1.4 72.9 ✓
Retrieve→LM ✓ 14.1 56.6+ 17.1 75.4+ 0.1 71.6 ✗
Retrieve→LM + NP ✓ 1.4 41.1 0.4 58.7 9.9 61.6− ✓

C
ha

tG
PT No-context LM ✗ 39.6 82.1+ 31.7 90.1+ 3.3 74.8 ✗

Retrieve→LM ✓ 5.1 47.6+ 6.8 65.1+ 0.8 72.3 ✓
Retrieve→LM + NP ✓ 5.2 37.3− 4.7 53.6 8.7 62.8− ✓

Table 6: Results on Error Rate (ER) along with FACTSCOREs estimated by each model (FS). ‘retrv’ indicates
whether or not retrieval is being used, and ‘ranking’ ✓ indicates whether the ranking between three LMSUBJs rated by
the model is consistent to the ground truth ranking. + and − respectively indicate the estimation is an overestimation
and an underestimation by more than 5% in absolute. Red Bold indicates the best (lowest) ER.

ducting experiments (Table 7). These LMs were
evaluated on many benchmarks but not in factual
precision of long-form generation since such eval-
uation is costly. We aim to provide new insights
on these LMs by estimating FACTSCORE of their
long-form generations.

4.3.1 Setup
We evaluate the following models (Table 7). GPT-
4 (OpenAI, 2023) is a multimodal LM released by
OpenAI available through an API. Alpaca (Taori
et al., 2023) is based on LLAMA (Touvron et al.,
2023) fine-tuned on the instructions data based
on InstructGPT following the recipe from Wang
et al. (2022). Vicuna (Chiang et al., 2023) is
based on LLAMA fine-tuned on the outputs from
ChatGPT available through ShareGPT.10 Dolly11

is Pythia 12B (Biderman et al., 2023) fine-tuned
on DataBricks Dolly, human-written data created
by Databricks.12 Oasst-pythia13 is Pythia 12B
fine-tined on human-written data collected through
Open Assistant.14 StableLM-tuned-alpha15 is
based on StableLM-base-alpha16 fine-tuned on the
data used in the Alpaca data, DataBricks Dolly, the
ShareGPT data, the GPT4All data (Anand et al.,
2023) and Anthropic HH (Bai et al., 2022). MPT
Chat is based on MPT 7B17 fine-tuned on the
ShareGPT data, the Alpaca data, Anthropic HH,
HC3 (Guo et al., 2023), and Evol-Instruct.18

We prompt each LMSUBJ to generate biographies

10sharegpt.com 11dolly-v2-12b 12databricks.com
13oasst-sft-1-pythia-12b 14open-assistant.io
15StableLM-tuned-alpha-7b 16stablelm-base-alpha-7b
17mosaicml.com/blog/mpt-7b 18evol_instruct_70k

LMSUBJ Base LM Use other LMs Open Release

InstructGPT ? ? ✗ Nov 2022
ChatGPT ? ? ✗ Nov 2022
GPT-4 ? ? ✗ Mar 2023
Alpaca {7B,13B,65B} LLAMA InstructGPT ✓ Mar 2023
Vicuna {7B,13B} LLAMA ChatGPT ✓ Mar 2023
Dolly 12B Pythia 12B N/A ✓ Mar 2023
Oasst-pythia 12B Pythia 12B N/A ✓ Mar 2023
StableLM-tuned 7B StableLM-base ChatGPT, GPT-4 ✓ Apr 2023
MPT Chat 7B MPT 7B ChatGPT ✓ May 2023

Table 7: A set of twelve LMs evaluated in Section 4.3.
All models are tuned for instruction following or chat.
Use other LMs indicates whether the model is trained on
any data that includes outputs of another model. Open
indicates model weights are publicly available.

of 500 human entities as done in Section 3.3 but
with no overlap in entities. We additionally include
InstructGPT, ChatGPT, and human-written biogra-
phies obtained through DBPedia. Human-written
biographies were unavailable for 11% of entities
which we consider as abstaining from responding.
See Table 8 for their statistics. In total, we evaluate
6,500 generations from 13 subjects, which would
have cost $26K if they were evaluated by humans.

4.3.2 Results
Figure 4 shows the ranking between 13 subjects
provided by two variants of the estimator with the
best F1MICRO and the best ER. Scores from two met-
rics are largely correlated, having a Pearson’s r of
0.99. This evaluation allows a better understanding
of these models, including:

• All LMs are substantially less factual than hu-
mans. This is in contrast to prior work that
claims LMs approach human performance, even

https://sharegpt.com/
https://huggingface.co/databricks/dolly-v2-12b
https://www.databricks.com
https://huggingface.co/OpenAssistant/oasst-sft-1-pythia-12b
https://open-assistant.io/
https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b
https://huggingface.co/stabilityai/stablelm-base-alpha-7b
https://www.mosaicml.com/blog/mpt-7b
https://huggingface.co/datasets/victor123/evol_instruct_70k
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Figure 4: Ranking between 13 subjects (human and 12 LMs), rated by our estimator with the best F1MICRO (left) and
the best ER (right): ChatGPT and LLAMA+NP, both with retrieval, respectively. Scores from two metrics have a
Pearson’s r of 0.99. See Table 8 for % of responding and # of atomic facts per response of each LM. The variance
in estimation based on different subsets of prompts is reported in Figure 5 of Appendix B.2.

LMSUBJ % responding #facts / res

GPT-4 88.2 60.8
Vicuna 13B 76.6 50.9
Vicuna 7B 91.0 45.6
Oasst-pythia 12B 100.0 39.7
StableLM-tuned-alpha 7B 66.6 38.0
MPT Chat 7B 88.8 37.3
ChatGPT 84.2 37.0
InstructGPT 99.8 27.7
Dolly 12B 100.0 24.6
Alpaca 7B 100.0 17.4
Alpaca 65B 100.0 17.1
Alpaca 13B 100.0 16.6

Human 88.8 29.0

Table 8: Statistics of 500 model-generated bios in our
unlabeled data from 12 LMs as well as human-written
bios. % responding indicates % of generations that do
not abstain from responding. #facts / res indicates # of
atomic facts per response. LMs are sorted based on # of
facts per response. See Figure 4 for their FACTSCOREs.

for complex tasks (Ding et al., 2022; Nori et al.,
2023; Lee et al., 2023), even though the task of
writing biographies is fairly easy.

• GPT-4 and ChatGPT are comparable in factual
precision. However, GPT-4 abstains from re-
sponding less (12% vs. 16%) and generates sig-
nificantly more facts (61 vs. 37 per response).

• GPT-4 and ChatGPT are significantly more fac-
tual than public models.

• Within the same family of models that differ in
sizes, there is a clear correlation between the
model size and factual precision, e.g., Alpaca

65B > 13B > 7B, and Vicuna 13B > 7B.
• Alpaca and Vicuna achieve performance that is

very close to each other within the same size of
models, possibly because they share the same
base model and similar training data. Nonethe-
less, Vicuna generates significantly more atomic
facts than Alpaca does (51 vs. 17 per response).
Also, Alpaca never abstains from answering
while Vicuna does.

• Within public models, there are large gaps in
factual precision even when the model size is
similar, e.g., within the 7B models, Alpaca and
Vicuna (∼ 40%) are more factual than MPT-
Chat (30%) and StableLM (17%). Possible fac-
tors include the choice of the base LM, the data,
and the training recipe (Hoffmann et al., 2022).

• As a random fun fact, Dolly 12B mentions
Databricks 26 times, e.g., “Zubaira Tukhugov
is the founder and CEO of Databricks, a
pioneer in the artificial intelligence
ecosystem.” (Zubaira Tukhugov is a mixed
martial artist with no connection to Databricks.)
This is possibly because the data manually cre-
ated by Databricks on which Dolly 12B is
trained includes much data about Databricks.

We highlight that this evaluation only considers
factual precision, specifically in people biographies.
A holistic evaluation of LMs should include other
aspects of generations such as fluency, coherence,
relevance, consistency and creativity, which is out
of scope for this paper.



5 Conclusion and Future Work

We introduced FACTSCORE, a new evaluation
of the factual precision of long-form generation
from LMs that breaks a generation down into a
series of atomic facts and computes a fraction
of facts supported by a given knowledge source.
We first performed extensive human evaluation,
finding that commercial, state-the-art-art LMs—
InstructGPT, ChatGPT, and search engine aug-
mented, PerplexityAI—make a substantial amount
of errors, e.g., having a FACTSCORE of 58% in the
case of ChatGPT. Since human evaluation is time-
consuming and costly, we proposed a model that es-
timates FACTSCORE, allowing an automatic evalu-
ation of factual precision. We found our estimator
based on retrieval over a knowledge source and
competitive language models estimates the factual
precision close to the ground truth, and showcased
its application by evaluating 12 recently-released
LMs that could have cost $65K if evaluated by hu-
mans and providing insights about them. As future
work, we suggest: (1) considering other aspects of
factuality such as recall (coverage of factual infor-
mation); (2) further improving the estimator for a
better approximation of factual precision; and (3)
leveraging FACTSCORE to correct model genera-
tions (briefly explored in Appendix C).

Limitations

Scope of FACTSCORE. All of our experiments
focus on people biographies and Wikipedia, be-
cause many LMs can generate biographies with
objective and specific facts (rather than subjective
and vague ones) and Wikipedia has a high coverage
for them. We highlight that FACTSCORE can be
applied to a broader domain, e.g., text about recent
events whose knowledge source can be a collection
of news articles, or text about scientific findings
whose knowledge source can be a collection of
scientific literature.

Due to the assumptions made in Section 3.1,
FACTSCORE is not applicable when the facts are
more nuanced, open-ended, and debatable (Chen
et al., 2019; Xu et al., 2023) or with a knowl-
edge source whose text frequently conflicts with
each other (Wadden et al., 2022). Moreover,
FACTSCORE may not be suitable for the human-
written text that is nuanced and includes intentional
or implicit deception.

Limitation in our estimator. While our estima-
tor closely approximates humans and provides con-

Prompt: Tell me a bio of Mary I of England.
Generation: Mary I was Queen of England and Ireland
from July 1553 until her death. Mary was the daughter of
King Henry VIII and his first wife, Catherine of Aragon.
After her father annulled his marriage to Catherine, Mary’s
status was in doubt, and she was excluded from the line of
succession. Her half-brother, Edward VI, succeeded their
father in 1547, and Mary had to live with the humiliation
of being declared illegitimate.

Table 9: An example whose factual precision is high
but recall is low. The generation does not mention how
Mary I of England got back to the line of succession
and eventually became a queen.

sistent ranking over a large set of LMs, it is not per-
fect in individual judgments, and the best variant
depends on the degree of how close a generation is
to human-written text and its linguistic complexity.
Future work can investigate how the distribution
of model generation affects the performance of the
estimator and further improve the estimator.

Beyond factual precision. FACTSCORE focuses
on factual precision—whether each piece of in-
formation in a generation is factually supported
by a reliable source of knowledge—which is only
one aspect of the broader factuality problem. For
instance, FACTSCORE does not consider factual
recall: the coverage of information in a genera-
tion. FACTSCORE does not penalize a model that
abstains from responding too frequently or gener-
ates fewer facts, which can be unfair since there
is an inherent trade-off between precision and re-
call. Moreover, the boundary between precision
and recall is often blurry, e.g., it is possible that,
even if every piece of information in a generation
is supported, it misses a significant piece of infor-
mation that should have been mentioned (example
in Table 9). We leave a more holistic evaluation of
factuality for future work, and recommend report-
ing FACTSCORE together with the % of abstention
and the average number of atomic facts (as we did
in Section 4.3).
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A Details in Data Collection

A.1 Sampling human entities

We sample 183 human entities to be annotated as
follows. We first choose entities from Wikidata
whose instance of is human and have correspond-
ing Wikipedia pages. We then categorize entities
based on two dimensions: frequency and nation-
ality, resulting in 20 categories. We then sample
entities uniformly at random over all categories.

Frequency. We compute freqValue as a max-
imum of the entity occurrence in Wikipedia pro-
vided by Kandpal et al. (2022) and the pageview
count of the Wikipedia page following Mallen
et al. (2022). We found using one of them
could lead to an underestimate of frequency lev-
els due to failure in entity linking or mismatch
in the Wikipedia page title, and taking a maxi-
mum of them provides a reasonable solution. We
then assign one of five categories: ‘Very rare’
if freqValue∈ [0, 102), ‘Rare’ if freqValue∈
[102, 103), ‘Medium’ if freqValue∈ [103, 104),
‘Frequent’ if freqValue∈ [104, 105), and ‘Very
frequent’ if freqValue∈ [105, ).

Nationality. We take country of citizenship
from Wikidata and assign them one of four cat-
egories: ‘North America’, ‘Europe & Middle
East’, ‘Asia & Pacific’ and ‘Latin/South America
& Africa’.

A.2 Details in generating atomic facts

We break out a generation automatically by split-
ting a generation into sentences, and feeding each
sentence to InstructGPT (text-davinci-003)
with a series of instructions to further break it down
to a series of atomic facts. The prompt to Instruct-
GPT is provided in Table 16. Outputs from In-
structGPT are used (1) to human experts for revi-
sion (Section 3.3) and (2) for model-based evalua-
tors (Section 4). We find human experts split and
merged atomic facts from InstructGPT for 18% and
34% of the cases, respectively.

A.3 More details on annotator recruitment

We recruit freelancers through Upwork and pay
15–25 USD per hour. We recruit fact-checking
experts—freelancers who mentioned fact-checking
as their expertise—for Step 3. Every worker went
through a qualification test of 2 hours and was
tested to be highly qualified. We design one HIT to
consist of three generations, one from each LMSUBJ,

Prompt: Tell me a bio of Ylona Garcia.
Sentence: [Ylona Garcia] has since appeared in various TV shows
such as ASAP (All-Star Sunday Afternoon Party), Wansapanataym
Presents: Annika PINTAsera and Maalaala Mo Kaya.
• Ylona Garcia has appeared in various TV shows. Supported
• She has appeared in ASAP. Supported
• ASAP stands for All-Star Sunday Afternoon Party. Supported
• ASAP is a TV show. Supported
• She has appeared in Wansapanataym Presents: Annika PINTAsera.
Not-supported
• Wansapanataym Presents: Annika PINTAsera is a TV show.
Irrelevant
• She has appeared in Maalaala Mo Kaya. Not-supported
• Maalaala Mo Kaya is a TV show. Irrelevant

Prompt: Tell me a bio of John Estes.
Sentence: William Estes is an American actor known for his role on
CBS police drama Blue Bloods as Jameson J̈amieR̈eagan.
• William Estes is an American. Irrelevant
• William Estes is an actor. Irrelevant
• William Estes is known for his role on CBS police drama Blue
Bloods. Irrelevant
• William Estes’ role on Blue Bloods is Jameson “Jamie” Reagan.
Irrelevant

Table 10: Examples that contain Supported,
Not-supported and Irrelevant.

for one prompt, because we find it saves annotation
time in total. 10% of the HITs have two workers
assigned to calculate the agreement rate; the rest
have one worker assigned. The full instructions and
the interface are provided in Figure 6 and Figure 7,
respectively.

A.4 Examples in annotated data

Table 10 provides examples of the human-
annotated data, each atomic fact with an assigned
label. Supported and Not-supported respec-
tively indicate Wikipedia supports the fact and
does not support the fact (either contradicts or does
not contain any evidence). Irrelevant indicates
the fact is irrelevant to the input prompt, which
can further be divided into two cases: (1) the fact
depends on other facts because it expands previ-
ous facts in a generation, and such other facts are
Not-supported, e.g., in the first example in Ta-
ble 10, and (2) the entire sentence is irrelevant to
the prompt, independent from other facts in a gen-
eration, e.g., the second example in Table 10. The
second case rarely happens with InstructGPT and
ChatGPT, but happens considerably with Perplex-
ityAI, i.e., 24.7% of generations of PerplexityAI
have ≥ sentences marked as irrelevant without de-
pendencies to other facts, compared to 0.5% and
1.3% in InstructGPT and ChatGPT, respectively.
This is because PerplexityAI often directly copies
search results even if they are largely irrelevant to
the input prompt. This is in agreement with a con-



Category % Example

Different interpretations of
the factual information

21 Gen Gerhard Fischer is an inventor. Wiki Gerhard Fischer (inventor). ... was first patented by Dr.
Gerhard Fischer in 1931. A metal detector had been invented some forty years earlier (1881) by
Alexander Graham Bell ...
Gen Chadwick Boseman was a producer. Comment Chadwick Boseman is not known as a producer, but
produced one music video.

Inferred (not directly men-
tioned but highly likely)

16 Gen Leach has since become a member of the England Test team. Comment Leach is a member of the
England Test team, but since when is less clear.

Depends on how strict in judg-
ing the correctness

11 Gen He made his Test debut for England in March 2018. Wiki On 16 March 2018, he was called up to
England’s Test squad (...) He made his debut in the second Test in Christchurch.
Gen The building was the first LEED-certificated building in Edmonton. Wiki (..) became the first
project in the City of Edmonton to achieve a LEED Gold status.

Subjective 21 Gen Chadwick Boseman became an African American pioneer. Wiki Culture writer Steve Rose, in The
Guardian, said that Boseman’s career was revolutionary and he “leaves behind a gamechanging legacy”
(...) Rose wrote: “Chadwick Boseman began his career playing African American icons and pioneers;
he ends it as one himself.”

Wikipedia not consistent 5 Gen [Tim Fischer] was an Ambassador to the Holy See from 2009 to 2012. Wiki ... was later
Ambassador to the Holy See from 2009 to 2012. (...) Australian Ambassador to the Holy See
2008–2012 Comment The plain text and the table of the Tim Fischer page as well as the Australian
Ambassador to the Holy See page are inconsistent in his start year.

Two different entities 5 Comment Carlos J. Alfonso vs. Carlos Alfonso

Mistakes in annotation 21 Gen Jack Leach is a left-handed batsman. Comment mentioned in the England cricket team page, Table
Current Squad.

Table 11: Categorization of disagreement cases. Gen indicates the generation from PerplexityAI, and Wiki indicates
evidence text from Wikipedia. Comment indicates our comments.

current work from Liu et al. (2023a) that shows
generative search engines like PerplexityAI copy
incorrect search results and generate text that is
irrelevant to the input query.

A.5 Analysis of disagreement cases

Table 11 reports the categorization of cases for
which two annotators assign a different label. Dis-
cussion in Section 3.5.

B Details in Estimators

B.1 Ablations

QA Prompting vs. TF Prompting As described
in Section 4.1, we use True or False as part of
the prompt, so-called TF Prompting. An alterna-
tive is QA Prompting, which generates a question
and the expected answer, obtains the answer for
the generated question independent from the ex-
pected answer, and compares the expected answer
and the predicted answer. This approach has been
widely studied in the summarization literature and
recent work in factual precision (Kryscinski et al.,
2020; Wang et al., 2020; Gao et al., 2022; Manakul
et al., 2023). Table 12 provides a comparison be-
tween two types of prompting. The TF approach
significantly outperforms the QA approach, consis-
tently over all methods. Our further analysis finds
that this is due to generated questions often being

Evaluator LMSUBJ

InstGPT ChatGPT PPLAI

Always Supported 30.8 37.1 45.0
Always Not-supported 35.7 29.1 15.5
Random 50.5 50.2 43.2

QA Prompting
No-context LM 56.5 48.8 32.5
Self-check LM 65.3 63.2 -
Retrieve→LM 65.3 58.2 47.3

TF Prompting
No-context LM 57.3 55.3 41.7
Self-check LM 68.0 61.9 -
Retrieve→LM 78.9 71.4 69.2

Table 12: Results on F1MICRO, comparing between the QA
prompting and TF Prompting. We use Inst-LLAMA 7B
as an LMEVAL. Self-check is not applicable to Perplex-
ityAI since PerplexityAI outputs are semi-deterministic.
Bold indicates the best F1MICRO.

overly vague or ambiguous. For instance, given a
supported fact Samuel Oboh is an architect,
the LM generates What is Samuel Oboh’s job?
as a question and Architect as an expected an-
swer, and the obtained answer is Vice President.
Although both Architect and Vice President
are correct, they are not the same, thus the model
incorrectly predicts Not-supported. Such cases
make the model overpredict Not-supported, lead-
ing to many incorrect predictions.
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Figure 5: Impact of different subsets of random samples in prompts. The FACTSCOREs to 13 subjects (human
and 12 LMs) are rated by our estimator with the best F1MICRO (Top) and the best ER (Bottom): ChatGPT and
LLAMA+NP, both with retrieval, respectively. The variance is overall low, and is lower as the sample size gets
larger and with LLAMA+NP (bottom) than with ChatGPT (top).

Retrieval LMSUBJ

InstGPT ChatGPT PPLAI

BM25 78.5 70.8 69.1
GTR Large 78.9 71.4 69.2
GTR xLarge 79.2 71.3 69.0

Table 13: Results on F1MICRO, comparing different re-
trieval systems: BM25, GTR Large and GTR xLarge,
all with Retrieve→LM based on Inst-LLAMA 7B. Bold
indicates the best F1MICRO.

Impact of the choice of retrieval. Table 13 com-
pares Retrieve→LM methods based on a few pas-
sage retrieval systems, including BM25 (Lin et al.,
2021), GTR Large and GTR xLarge. Results indi-
cate that all retrieval systems are equally good and
Retrieve→LM is not sensitive to the choice of the
retrieval system.

Qualitative analysis. Table 14 categories errors
made by Retrieve→LM based on ChatGPT, the
model with the best F1MICRO. 70% of the errors are
due to retrieved passages not providing direct evi-
dence (either support or contradiction). These are
difficult even for state-of-the-art retrieval systems
and language models because validating facts often

Category %

No direct evidence from retrieved passages 70
Distracted by other passages 17
Atomic fact is context-dependent 7
Wrong prediction even with the right passage 3
Annotation error 3

Table 14: Categorization of 30 samples incorrectly pre-
dicted by Retrieve→LM based on ChatGPT.

requires reading the entire page rather than a single
passage, e.g., an actor not appearing in a particular
film. 17% of errors are made because ChatGPT
is being distracted by other passages, although it
assigns a correct label if only a particular, correct
passage is given.

B.2 Additional results in evaluation of new
LMs (Section 4.3)

Figure 5 reports FACTSCOREs estimated by two
variants of our estimator as in Figure 4 but with
100 random subsets of the data. Specifically, we
chose N samples (out of 500) uniformly at random
across 20 categories (defined in Appendix A.1)
M times and report the average and the standard



deviation. We use N = {40, 100, 200} and M =
100. Results indicate that the variance is overall
low, preserving ranking between 13 subjects in
most cases. As expected, the variance is lower as
the sample size gets larger. Finally, the estimator
based on ER based on LLAMA+NP (bottom) has
an overall lower variance than the estimator based
on ChatGPT (top).

C Editing Experiments

Our experiments in Section 4 focused on automat-
ically identifying factual precision errors in long-
form generations by language models. Can these
labels be used to actually correct mistakes in the
long-form generations? In this section we perform
a preliminary exploration of methods to edit long-
form LM generations to reflect factually correct
information. We assume we have access to the
human-annotated set of FACTSCORE labels, and
measure how good models are at editing incorrect
sentences. In other words, we evaluate our editor
models independent of the errors arising from the
estimator.

C.1 Methods

We adopt a similar set of methods as Section 4.1
for our editing models. All methods below use four
exemplar examples for in-context learning which
were sampled from our dataset and removed for
subsequent analysis. For all methods, we use Ope-
nAI’s ChatGPT (OpenAI, 2022) as the base lan-
guage model due to its generative capabilities.

No-context LM. We feed language models the
prompt Input: <sentence> Edit: and ask it to
edit the text, without any retrieved context.

Retrv→LM. To assist an editor model, we use
a passage retrieval system to find supporting
evidence from an external knowledge source
(Wikipedia in our case). Our retrieval pipeline is
identical to Section 4.1.2, but uses 3 retrieved pas-
sages instead of 5 due to context length restrictions.

+ Atomic Facts. Additionally, we explore whether
adding atomic facts and their labels assist a model
with fine-grained editing. Specifically, after the
input sentence we add information to the prompt of
the form Fact 1 (True/False): <atomic fact
1> Fact 2 (True/False): <atomic fact 2>
... This data is also provided in the exemplars.

Non-edit baselines. Finally, we add some triv-
ial baselines to lower-bound our editing metrics.

Specifically, we measure the performance of input
copying (no edits), as well as an editor with ran-
dom token dropping / replacement on a random
25% subset of tokens.

C.2 Evaluation
In our data collection process (Section 3.3), along
with our verification data we also collected gold-
standard human written edits. Let X = x1, ...xNX

be the input sentence and G = g1, ...gNG
be the

gold edited sentence. We evaluate the quality of
the model-generated edit (E = e1, ..., eNE

) using
three automatic metrics,

(1) Error Localization (ErrLoc): Our first met-
ric measures how well the editor identifies errors
within the input sentence. Specifically, we first cre-
ate a “token preservation string”, marking token
xi in the input sentence X as "Preserved" or "Not
Preserved". We then compute the macro-averaged
F1 score between the token preservation strings
derived from the gold edit and the model-generated
edit. We remove stopwords, punctuation and low-
ercase all words before performing this calculation.
To equally weigh every sentence, F1 scores are in-
dependently computed for each sentence before a
final averaging.

(2) Edit Correctness (EditCorr): Our second met-
ric assesses the quality of the additional tokens
added by the model-generated edit. Specifically,
we check the token-level F1 score (Rajpurkar et al.,
2016) comparing the new tokens added by the gold
edit G and the new tokens added by the model-
generated edit E. More concretely,

Ncommon =
∑

ei∈E,ei /∈X

ei ∈ G

precision = Ncommon / ||{ei ∈ E, ei /∈ X}||
recall = Ncommon / ||{gi ∈ G, gi /∈ X}||

EditCorr (F1) = HM(precision, recall)

where || · || is the set cardinality and HM de-
notes a harmonic mean. For this metric, we discard
data points where the gold edit did not add new
tokens. Similar to ErrLoc, we also remove stop-
words, remove punctuation and lowercase strings
before calculating EditCorr scores.

(3) SIM alignment (SimAl): Finally, due to the
large output space of possible edits, we also adopt a
metric which rewards paraphrases of the gold edits.
We use semantic similarity embeddings from Wiet-
ing et al. (2022) which map paraphrases to a simi-



InstructGPT ChatGPT Perplexity AI

Editor ErrLoc ErrCorr SimAl ErrLoc ErrCorr SimAl ErrLoc ErrCorr SimAl

Input copying 37.1 0.0 0.0 38.8 0.0 0.0 45.6 0.0 0.0
25% random noise 44.1 0.1 0.5 45.5 0.1 0.4 45.2 0.0 0.3

ChatGPT
No-context 49.0 8.5 6.2 45.3 6.8 4.0 48.3 6.2 4.1
No-context + atomic facts 58.7 12.7 10.5 53.4 10.0 6.6 56.0 9.6 6.1
Retrv→LM 52.6 21.8 15.7 43.9 16.8 9.5 46.3 13.5 6.8
Retrv→LM + atomic facts 65.4 30.4 25.5 63.5 28.3 19.3 62.4 23.6 15.9

Table 15: Results after automatic editing with ChatGPT assuming ground truth verification labels. All editors perform
better than trivial lowerbound baselines, and using retrieval and atomic fact labels boosts editing performance.
Details of automatic metrics (ErrLoc, ErrCorr, SimAl) are defined in Section C.2.

lar part of a vector space. We check the similarity
between the model edit E and the gold edit G, nor-
malizing it by the similarity between G and the
original input X .19 Specifically,

Sim = max

(
0,

s(G,E)− s(G,X)

1− s(G,X)

)
where s(A,B) is the semantic similarity score

(normalized to [0, 1]) from the model in Wieting
et al. (2022). Intuitively, this metric measures how
much closer G and E are compared to G and X .

C.3 Results

We present our editing results in Table 15. Overall,
we find that:

All editing models perform better than trivial
lower bounds. Overall, we find that all editor mod-
els outperform lower-bound baselines like random
noise. This even happens in the no-context LM set-
ting, where ChatGPT is editing its own output (or
search engine augmented Perplexity AI’s outputs),
but can still perform non-trivial corrections (6.8
ErrCorr for ChatGPT correcting its own outputs vs
0.1 for a random noise editor baseline).

Retrieval significantly helps with editing per-
formance. Across all base language models and
metrics, augmenting the editor with retrieved para-
graphs boosts performance (6.8 → 16.8 ErrCorr,
4.0 → 9.5 SimAl for ChatGPT correcting its own
outputs). We hypothesize that the internal para-
metric knowledge in ChatGPT has insufficient in-
formation about the topic (as we also observed in
Section 3.4) to perform fine-grained editing, and
using external knowledge from Wikipedia greatly

19We avoid taking the vector differences between the origi-
nal / edited text since edit vectors (Guu et al., 2018) were not
explicitly modeled in Wieting et al. (2022).

simplifies error localization and correction. This
also corroborates with our findings in Section 4.2.1.

Atomic fact labels improve error localization
and improve editing performance. Across all
base language models (with or without retrieval)
we observe that providing fine-grained atomic fact
labels improves editing performance (16.8 → 28.3
ErrCorr, 9.5 → 19.3 SimAl for ChatGPT correct-
ing its own outputs). Fine-grained fact correctness
labels help the editor easily identify problematic
tokens, as seen by the consistent improvements in
ErrLoc scores (43.9 → 63.5 for ChatGPT correct-
ing itself). We hypothesize atomic facts help guide
the editor with its editing process (for instance,
perform a more targeted search in the retrieved
paragraphs), resulting in ErrCorr improvements.
We also find that atomic fact labels reduces the
frequency of editor copying the input verbatim or
saying The input has no errors from 37.3% to 3.9%.

Perplexity AI outputs are the hardest to edit.
Overall, we find the highest editing success for
InstructGPT, followed by ChatGPT and the least
success for Perplexity AI. We hypothesize this is
because Perplexity AI already uses a search en-
gine, so errors are much more subtle as extensively
discussed in Section 3.5.



Please breakdown the following sentence into independent facts: He made his acting debut in the film The Moon is the Sun’s Dream (1992), and continued to
appear in small and supporting roles throughout the 1990s.
- He made his acting debut in the film.
- He made his acting debut in The Moon is the Sun’s Dream.
- The Moon is the Sun’s Dream is a film.
- The Moon is the Sun’s Dream was released in 1992.
- After his acting debut, he appeared in small and supporting roles.
- After his acting debut, he appeared in small and supporting roles throughout the 1990s.

Please breakdown the following sentence into independent facts: He is also a successful producer and engineer, having worked with a wide variety of artists,
including Willie Nelson, Tim McGraw, and Taylor Swift.
- He is successful.
- He is a producer.
- He is a engineer.
- He has worked with a wide variety of artists.
- Willie Nelson is an artist.
- He has worked with Willie Nelson.
- Tim McGraw is an artist.
- He has worked with Tim McGraw.
- Taylor Swift is an artist.
- He has worked with Taylor Swift.

Please breakdown the following sentence into independent facts: In 1963, Collins became one of the third group of astronauts selected by NASA and he served
as the back-up Command Module Pilot for the Gemini 7 mission.
- Collins became an astronaut.
- Collins became one of the third group of astronauts.
- Collins became one of the third group of astronauts selected.
- Collins became one of the third group of astronauts selected by NASA.
- Collins became one of the third group of astronauts selected by NASA in 1963.
- He served as the Command Module Pilot.
- He served as the back-up Command Module Pilot.
- He served as the Command Module Pilot for the Gemini 7 mission.

Please breakdown the following sentence into independent facts: In addition to his acting roles, Bateman has written and directed two short films and is
currently in development on his feature debut.
- Bateman has acting roles.
- Bateman has written two short films.
- Bateman has directed two short films.
- Bateman has written and directed two short films.
- Bateman is currently in development on his feature debut.

Please breakdown the following sentence into independent facts: Michael Collins (born October 31, 1930) is a retired American astronaut and test pilot who
was the Command Module Pilot for the Apollo 11 mission in 1969.
- Michael Collins was born on October 31, 1930.
- Michael Collins is retired.
- Michael Collins is an American.
- Michael Collins was an astronaut.
- Michael Collins was a test pilot.
- Michael Collins was the Command Module Pilot.
- Michael Collins was the Command Module Pilot for the Apollo 11 mission.
- Michael Collins was the Command Module Pilot for the Apollo 11 mission in 1969.

Please breakdown the following sentence into independent facts: He was an American composer, conductor, and musical director.
- He was an American.
- He was a composer.
- He was a conductor.
- He was a musical director.

Please breakdown the following sentence into independent facts: She currently stars in the romantic comedy series, Love and Destiny, which premiered in 2019.
- She currently stars in Love and Destiny.
- Love and Destiny is a romantic comedy series.
- Love and Destiny premiered in 2019.

Please breakdown the following sentence into independent facts: During his professional career, McCoy played for the Broncos, the San Diego Chargers, the
Minnesota Vikings, and the Jacksonville Jaguars.
- McCoy played for the Broncos.
- McCoy played for the Broncos during his professional career.
- McCoy played for the San Diego Chargers.
- McCoy played for the San Diego Chargers during his professional career.
- McCoy played for the Minnesota Vikings.
- McCoy played for the Minnesota Vikings during his professional career.
- McCoy played for the Jacksonville Jaguars.
- McCoy played for the Jacksonville Jaguars during his professional career.

Please breakdown the following sentence into independent facts

Table 16: A prompt given to InstructGPT to generate atomic facts for a given sentence. Model generated atomic
facts were revised by human editors.



Figure 6: Instructions for data annotation in Section 4. We also provided a demonstration video, and gave feedback
1-1 during the qualification task.



Figure 7: An interface for data annotation in Section 4. Annotators were able to navigate Wikipedia on the left.
They annotate three pieces of generations from three LMs for the same prompt in one HIT since it saves time. Since
completing one HIT takes considerable amount of time (25min), we added a function that allows saving their work
at any stage in the middle of the HIT.


