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Abstract

Since annotating 3D data is expensive, several recent
works have proposed pretraining models on self-supervised
tasks before transferring representations to smaller datasets
of downstream applications. Recent work [0] proposed
a simple self-supervised task of first decomposing an ob-
ject into approximate convex polyhedra followed by met-
ric learning on this approximate segmentation. They
showed encouraging transfer learning results and a focus
on higher-level semantics of an object with this approach.

Inspired by the success of [0], we proposed a new self-
supervised algorithm which applies discriminators on point
clouds segmented as approximate convex polyhedra. Our
key idea is to perform a random perturbation (such as rota-
tion, scaling, dropping) of a single approximate polyhedra,
and teach a model to discriminate between the perturbed
and original 3D objects. We conduct several experiments
testing our approach on unsupervised shape classification
& few-shot part segmentation, and notice competitive per-
formance of individual perturbations compared to [0]. Our
best method interpolates the losses from our proposed task
and the method in [6], outperforming re-runs of [0].

1. Introduction

Deep learning on 3D data is crucial for the success
of many important real-world applications like animation,
medical imaging, self-driving cars, robotics, etc. Unfortu-
nately, these algorithms tend to be data hungry and annotat-
ing rich 3D data is difficult and expensive. The unavailabil-
ity of large training sets for fundamental 3D vision prob-
lems of shape classification and part segmentation has re-
sulted in a step towards using self-supervised approaches to
learn 3D shape representations. An important aspect of this
approach is identifying a self-supervision task that would
benefit downstream tasks. A promising approach in this di-
rection is Gadhela et al. 2020 [6] who perform metric learn-

ing on Approximate Convex Decompositions (ACD) of 3D
point clouds. The idea in ACD is to automatically decom-
pose 3D objects into constituent maximal convex polyhe-
dra, which capture structural properties of the shape. We be-
lieve ACD is a great technique to “discretize” point-clouds,
converting a set of 1000s of points to a small set of 20-30
convex polyhedra with semantically meaningful properties.

Inspired by [60], we leverage ACD as a preprocessing step
for a new self-supervised learning algorithm. Our key idea
is to apply systematic deformations (such as rotation, scal-
ing, dropping) on individual convex polyhedra derived from
ACD. These deformations help maintain the local consis-
tency of point clouds within the convex polyhedra, but per-
turb the high-level structural properties of the 3D object.
To use these perturbed objects, we train a model to dis-
criminate between unperturbed objects and perturbed ob-
jects using a binary classifier on top of point cloud rep-
resentations. This discriminator approach resembles self-
supervised learning in natural language processing using
discriminators [3] as well as discriminators in Generative
Adversarial Networks [1, 8].

We conduct several experiments to evaluate two aspects
of our approach: 1) how easy is the proposed self-
supervised task for neural networks? 2) how well does the
approach transfer to downstream tasks like unsupervised
shape classification and few-shot part segmentation? Our
results indicate that the dropping and rotation perturbations
are harder to learn than scaling, but also lead to better
downstream performance. Individual perturbations per-
form competitively to the algorithm proposed by [6]. An
interpolation between the losses from our method and [6]
gets the best performance, beating re-runs of [6].
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* Modify codebase to perform reconstruction of original
point clouds using chamfer distance

2. Related Work

Representation learning on 3D point sets: Traditional
deep learning methods are designed for densely structured
input data but 3D point clouds are unordered sets of vectors
and hence harder to train on directly. Volumetric meth-
ods [10, 20, 12, 23] and multi-view methods [19, 14, 24]
have been proposed that use traditional deep learning
models on pooled features from rendered views. But these
methods struggle with larger point clouds and when point
clouds have varying density. They do not perform well
on tasks like per-part segmentation either. Hence in the
recent years, works like PointNet [16] have shown that
point features can be processed directly to obtain point
level features that are permutation invariant and these
features can then be pooled to obtain global features. But
all these methods rely heavily on labeled data for learning
downstream tasks such as classification and segmentation.
Hence label-efficient methods are desirable and an active
field of research. To this end many Self-supervised learning
based methods have been suggested whose main aim is
to train a network on tasks that allow models to learn
intermediate representations that can help with training
downstream tasks.

Self Supervised Learning (SSL): SSL has shown a lot
of promise in fields like Computer Vision [5, 13, 7] and
NLP [4, 21, 22] for training on tasks with fewer labels.
SSL is a variation of unsupervised learning that exploits
tasks providing “free” data labels to learn intermediate
representations. SSL can be seen as a pipeline consisting of
two steps: 1. Pre-train a network on a task with unlabeled
data and, 2. Fine-tune this network for downstream tasks.
The advantage of this pipeline is that fine-tuning on the
downstream task can be attained by much fewer labeled
data as our learned intermediate representation already
encodes some generic features relevant to the downstream
task. Some papers in computer vision have proposed the
task of predicting the spatial transformations between parts
of images [7, 13] where they re-use the labels generated by
transformed pixel arrangement. We draw inspiration from
such approaches and design our tasks by adding different
types of perturbations to objects. But working directly
on all the points in a point cloud is costly, so we look at
methods that allow us to decompose the point clouds into

smaller regions which can then be treated individually.

Approximate Convex Decomposition: 3D shapes can be
represented as union of multiple convex components, but
performing exact convex decomposition leads to a high
number of convex parts while being very expensive com-
putationally. Hence we look at Approximate Convex De-
composition(ACD) which allows concavity up to a certain
tolerance. Volumetric Hierarchical Approximate Convex
Decomposition (V-HACD) [11] is one such method that
computes convex decomposition of the shapes from their
volumetric representation obtained after voxelisation of the
point cloud.

[6] decompose a shape using V-HACD and then assign
component labels to the points in the original ShapeNet
mesh using nearest neighbour matching with points sam-
pled from each of the components. Here they formulate
their self-supervised task as a metric learning problem on
point embeddings using contrastive loss [9]. [15] and [18]
implement a similar approach where the self-supervised
task is to reconstruct a point cloud after random spatial
transformations are applied to the decomposed parts. Simi-
lar to prior work, we leverage ACD to identify semantically
meaningful parts of an object. However, unlike prior work
we apply different types of perturbations (like scaling, rota-
tion, dropping) to an individual ACD component in 50% of
the dataset, and train a classifier over PointNet++ features
to identify whether a shape is real or fake.

3. Description of method and Architecture

Overview: We propose a new self-supervised task for 3D
objects, inspired from recent work in NLP literature on
using discriminators for self-supervised learning [3]. Our
approach is to systematically deform individual convex
polyhedra in the approximate convex decompositions of
3D point clouds and train our model to classify whether the
final shape is real or has been tampered with. We believe
the information learned as a part of the classification pro-
cess helps the model perform well on various downstream
tasks where annotating 3D data is expensive.

Approximate Convex Decomposition (creation of data
for self-supervised learning): We use Approximate Convex
Decomposition’s of 3D point cloud representations for
our Self-supervised learning task similar to [6]. Com-
pared to exact convex representations using ACD ensures
lower-level properties of shape are intact & consistent,
so that the model can focus on higher-level semantics.
ACD created using Volumteric Hierarchical Approximate
Convex Decomposition [1 1] has multiple advantages over
other methods. The first step is to convert point cloud
representations of the shape into Occupancy grids. Once
the voxelization is complete, the volume is split into half
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Figure 1. Different kinds of perturbations (at a convex polyhe-
dra level) applied to four different point clouds (rows of the fig-
ure). The four columns represent — 1. the original ACD of the
3D Point Clouds 2. SCALE perturbation 3. ROTATE perturbation
4. DROP perturbation. Since these perturbations lead to unnatu-
ral objects (which are still locally consistent), we expect models
trained to discriminate between real/fake objects will learn mean-
ingful higher-level semantics of 3D objects.

along one of the three axes. This is done recursively until
the realisation of desired number of components.

The perturbations: We systematically deform a single ran-
dom convex polyhedra which is later classified as a part of
the training objective. We apply three types of perturbations
with multiple hyperparameters to create different types of
deformations as shown in Figure 1.

We first select a random polyhedra from the set of
ACD components and apply one of three perturbations
(DROP, SCALE, ROTATE) to it. For the DROP perturbation
we completely drop the selected segment from the input
creating a deformed 3D point cloud representation. As
seen in the fourth column of Figure 1, parts of the objects
like a table leg, stool head, tail wings have been removed
(compared to first column). For the SCALE perturbation
we re-size the randomly selected segment (with respect
to its centroid) by a randomly chosen amount amongst
[0.125, 0.25, 4, 8]. As seen in the second column of
Figure 1, a table leg, stool head, fuselage or plane wings
have been compressed relative to rest of the object. Finally,
for the ROTATE perturbation, we simply rotate the convex

polyhedra through the centroid along either the x, y or z
axis by a randomly selected rotation amount among the
choices [45, 90, 135, 180, 225, 270, 315] degrees. In the
third column of Figure 1 the table leg, stool leg, plane wing
/ cockpit have been rotated relative to the rest of the object.

Discriminator: We apply a systematic deformation to ran-
dom 50% of the examples in the minibatch. After system-
atic deformation over approximate convex polyhedra, our
self-supervised training objective is a discriminative task
that distinguishes the real objects from deformed ones. We
extract features from three different parts of the PointNet++
model [17] (similar to the feature extraction setup for Mod-
elNet40 experiments in [6]), pool representations from in-
dividual points using average pooling, and classify them as
real or fake. The loss function used is binary cross entropy,
after a linear projection layer on the feature set. We also ex-
periment with interpolating the original ACD loss from [6]
with our proposed discriminator.

4. Experimental Setup

Model configurations: To test the efficacy of our method,
we evaluate nine different configurations of the system ab-
lating components of our proposed method:

* CONTRAST (baseline): the original method proposed
by [6], where point embeddings from the same ACD
component are encouraged to be close to each other in
vector space.

* PERTURB-DROP: DROP perturbation applied to 50%
dataset, and model trained to classify real vs fake.

* PERTURB-SCALE: SCALE perturbation applied to 50%
dataset, and model trained to classify real vs fake.

* PERTURB-ROTATE: ROTATE perturbation applied to
50% dataset, and model trained to classify real vs fake.

* PERTURB-ALL: For every shape in a random 50% of
the dataset, one of the three perturbations is chosen
uniformly randomly and applied. Model trained to
classify real vs fake.

¢ CONTRAST + A PERTURB-ALL: Both loss functions
(CONTRAST & PERTURB-ALL) are used, interpolated
by constant A (A = 0.1, 1.0, 10.0, 100.0).

Evaluation: We evaluate our self-supervised models with
the goal of answering two research questions:

1) How good are the models at the self-supervised task?
This evaluation gives us a sense of how easy/difficult the
discrimative task is. To perform this experiment, we simply
measure the binary classification accuracy of the model on



Configuration

fewshot ShapeNetSeg segmentation (k=5)

class avg. mloU

instance avg. mloU

CONTRAST [6]

72.300 £ 1.800

CONTRAST (our re-run)
PERTURB-DROP
PERTURB-SCALE
PERTURB-ROTATE
PERTURB-ALL

73.051 £ 0.203
73.616 £ 0.081
71.960 £+ 0.071
73.700 += 0.170
72.813 £ 0.031

74.261 £ 0.055
72.369 £+ 0.069
73.260 £ 0.080
72.829 £+ 0.080
70.177 £ 0.090

CONTRAST + 0.1 * PERTURB-ALL
CONTRAST + 1.0 * PERTURB-ALL
CONTRAST + 10 * PERTURB-ALL

CONTRAST + 100 * PERTURB-ALL

73.764 + 0.234
72.937 £ 0.094
70.207 £ 0.139
66.307 £ 0.121

72.626 £+ 0.077
73.631 £0.133
68.805 £ 0.093
63.620 £ 0.055

Table 1. Few shot semantic segmentation results on ShapeNetSeg, with k& = 5, training each model for 9 epochs (default setting). Each
result has been averaged across five different random seeds. Our results indicate that the DROP and ROTATE perturbations are more effective
than SCALE, with best performance using an interpolation between CONTRAST and PERTURB-ALL.

Configuration Discr. Accuracy
CONTRAST N/A
PERTURB-DROP 63.6%
PERTURB-SCALE 91.7%
PERTURB-ROTATE 77.8%
PERTURB-ALL 74.9%
CONTRAST + 0.1 * PERTURB-ALL 73.4%
CONTRAST + 1.0 * PERTURB-ALL T74.7%
CONTRAST + 10 * PERTURB-ALL 75.5%
CONTRAST + 100 * PERTURB-ALL 75.7%

Table 2. Binary classification accuracy of the self-supervised dis-
criminative task proposed in this project (classifying real shapes
vs fake shapes) using early stopping in first 35 epochs. DROP is
the hardest perturbation to identify, whereas SCALE is the easiest.

a held-out set undergoing the same perturbation.

2) how well do these learned representations transfer to
downstream tasks? This type of evaluation measure the
actual usefulness of this self-supervised method to real-
world 3D tasks. We use a setup identical to [6], testing the
model’s performance on (i) unsupervised shape classifica-
tion on ModelNet40 [23]; (ii) few-shot semantic segmenta-
tion of ShapeNetSeg part of ShapeNetCore [2]. We re-use
the codebase' of [6] and keep identical hyperparameters’
(please refer to their codebase and paper for more details).

"https://git.io/J3N9z
20nly batch size is halved to 16 due to GPU memory, but we also do
this for the baseline system CONTRAST.

Configuration ModelNet40 Acc.
Train Dev  Test
Random Weights [6] - - 78.0
CONTRAST [6]** - - 89.1
CONTRAST (our re-run, 5 epochs) 90.7 874 86.1

CONTRAST (our re-run, 95 epochs) 923 88.0 87.7
CONTRAST (our re-run, best epoch) 934 877 873

CONTRAST (our re-run, 5 epochs) 90.7 874 86.1
PERTURB-DROP 875 837 814
PERTURB-SCALE 91.8 83.6 81.2
PERTURB-ROTATE 90.6 858 84.6
PERTURB-ALL 90.7 84.1 829
CONTRAST + 0.1 * PERTURB-ALL 932 89.1 88.2
CONTRAST + 1.0 * PERTURB-ALL 952 887 86.6
CONTRAST + 10 * PERTURB-ALL 939 882 852

CONTRAST + 100 * PERTURB-ALL 93.8 86.3 84.5

Table 3. Unsupervised shape classification accuracy on Model-
Net40 for different configurations of our model all trained for five
epochs. Individually, ROTATE perturbations perform best. Over-
all, an interpolation between CONTRAST and PERTURB-ALL with
A = 0.1 gets the optimal performance. (**Note: we were unable
to reproduce the numbers reported in [6] despite using their code-
base, we’ve reported the numbers we obtained after re-running the
code in the CONTRAST rows.)

5. Results

Reproducing Results from [6]: First, we attempt to repro-
duce the ModelNet40 and ShapeNetSeg results from [6].
We are successful in reproducing results on ShapeNetSeg,
as seen in the CONTRAST rows of Table 1. However, we
were unable to match the results on ModelNet40 with
default hyperparameters. As seen in the CONTRAST rows
of Table 3, we notice 2-3% inferior performance compared
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to [6] for a variety of checkpoints, possibly indicating
overfitting. For a fair comparison and computational
reasons, we hence evaluate on ModelNet40 using 5 epochs
of self-supervised training on different configurations.

DROP perturbations hardest to discriminate, SCALE
perturbation is the easiest: We present our first set of
results in Table 2, measuring binary classification accuracy
on our proposed self-supervised task (on a held-out valida-
tion set). We train all models to 35 epochs, and measure
best validation accuracy. We find that the model struggles
to classify the DROP perturbations (only 63.6% accuracy),
but finds it much easier to classify SCALE (91.7%) and
ROTATE perturbations (77.8%). We also notice a gentle
increase in classification accuracy as we interpolate more
strongly with PERTURB-ALL (73.4% to 75.7%). Note that
we expect all accuracy scores to improve with more epochs
of training — DROP / ROTATE jump to 67% / 79% with
50-60 epochs. However, training is expensive ( 45 to 60
minutes per epoch using single 1080Ti GPU), so we could
only run more epochs for a limited set of configurations.

ROTATE perturbation performs best on both down-
stream tasks, SCALE is the worst: We see a similar trend
on both downstream tasks, unsupervised shape classifica-
tion in Table 3 and few-shot part segmentation in Table 1.
For the individual perturbation models, we find ROTATE to
be the most effective (84.6% on ModelNet40, 73.7 class
average mloU on ShapeNetSeg), followed by DROP (81.4%
/ 73.6). SCALE is the least effective perturbation (only
81.2% / 72.0). Perhaps, the SCALE perturbations are too
easy to learn meaningful representations (“ease” defined by
results in Table 2), and DROP is too hard / ambiguous for the
model. We believe ROTATE has the appropriate difficulty,
teaching the model good transferable representations. Note
that in Table 3 we see that all individual perturbations beat
the random weights performance from [6], so we believe
all configurations learn some meaningful representations.

Interpolated models work best on both downstream
tasks: In both Table 3 and Table 1 we find that the in-
terpolation constant A = (.1 works best on both clas-
sification and segmentation (88.2% on ModelNet40, 73.8
class average mloU on ShapeNetSeg). Performance gener-
ally degrades with higher interpolation constants (or higher
weights on the PERTURB-ALL term). Performance with
A = 0.1 exceeds the baseline CONTRAST, which gets 86.1%
on ModelNet40 and 73.0 on ShapeNetSeg. In fact, it’s even
higher than the ModelNet40 performance we get on CON-
TRAST for any of our re-runs with more epochs (86.1% -
87.7%). Note that [6] report higher scores on ModelNet40
(of 89.1%) but we could not reproduce their numbers as we
have discussed earlier in this section.

6. Conclusion & Future Work

In this project we presented a new self-supervised
learning algorithm where we trained a discriminator to
classify between real and fake shapes. Our fake shapes
were constructed by systematic perturbations of individual
polyhedra obtained by segmenting point clouds using ap-
proximate convex decomposition. Overall our results were
encouraging — 1) all individual perturbations learn some
meaningful representations, beating a random weights
baseline; 2) ROTATE is the most effective perturbation,
SCALE is least effective; 3) An interpolation between the
loss function from [6] and our PERTURB-ALL configuration
gets the best result on both datasets, outperforming the
numbers obtained by re-running the codebase of [6].

There are a number of research directions which can be
explored as future work. An obvious next step would be
exploring the effect of interpolating just ROTATE with CON-
TRAST, since it is the most effective perturbation. Another
simple direction is checking the effect of modifying the per-
turbation hyperparameters — for instance, perhaps SCALE
amounts closer to 1 will be more effective. Two other in-
teresting directions to explore (with more implementation
work) could be — 1) ensuring real/fake versions of same
object are in same minibatch, or perhaps classifying a real
shape from a pool of fake versions of same object; 2) us-
ing chamfer distance losses to reconstruct the original point
cloud from a perturbed shape.
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